{"title":"射频范围内薄膜磁特性的测量","authors":"A. Burmitskikh, N. Boev, Sofya A. Kleshnina","doi":"10.1109/SIBCON50419.2021.9438908","DOIUrl":null,"url":null,"abstract":"The paper presents a method for measuring the ferromagnetic resonance spectrum in the radio frequency range (4 MHz). A high-frequency generator operating in the autodyne mode was used to measure the magnetic characteristics of thin ferromagnetic films. Theoretical equations for ferromagnetic resonance excitations have been presented. Experimental results for the samples of nanocrystalline thin permalloy magnetic films with low magnetostriction and different values of the anisotropy field were obtained. Ferromagnetic resonance in the radio frequency range proved to be an excellent mean for measuring the value and direction of the magnetic anisotropy field in thin magnetic films.","PeriodicalId":150550,"journal":{"name":"2021 International Siberian Conference on Control and Communications (SIBCON)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of Thin Film Magnetic Characteristics in the Radio Frequency Range\",\"authors\":\"A. Burmitskikh, N. Boev, Sofya A. Kleshnina\",\"doi\":\"10.1109/SIBCON50419.2021.9438908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a method for measuring the ferromagnetic resonance spectrum in the radio frequency range (4 MHz). A high-frequency generator operating in the autodyne mode was used to measure the magnetic characteristics of thin ferromagnetic films. Theoretical equations for ferromagnetic resonance excitations have been presented. Experimental results for the samples of nanocrystalline thin permalloy magnetic films with low magnetostriction and different values of the anisotropy field were obtained. Ferromagnetic resonance in the radio frequency range proved to be an excellent mean for measuring the value and direction of the magnetic anisotropy field in thin magnetic films.\",\"PeriodicalId\":150550,\"journal\":{\"name\":\"2021 International Siberian Conference on Control and Communications (SIBCON)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Siberian Conference on Control and Communications (SIBCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBCON50419.2021.9438908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Siberian Conference on Control and Communications (SIBCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBCON50419.2021.9438908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Measurement of Thin Film Magnetic Characteristics in the Radio Frequency Range
The paper presents a method for measuring the ferromagnetic resonance spectrum in the radio frequency range (4 MHz). A high-frequency generator operating in the autodyne mode was used to measure the magnetic characteristics of thin ferromagnetic films. Theoretical equations for ferromagnetic resonance excitations have been presented. Experimental results for the samples of nanocrystalline thin permalloy magnetic films with low magnetostriction and different values of the anisotropy field were obtained. Ferromagnetic resonance in the radio frequency range proved to be an excellent mean for measuring the value and direction of the magnetic anisotropy field in thin magnetic films.