eNNclave

Alexander Schlögl, Rainer Böhme
{"title":"eNNclave","authors":"Alexander Schlögl, Rainer Böhme","doi":"10.1145/3411508.3421376","DOIUrl":null,"url":null,"abstract":"Outsourcing machine learning inference creates a confidentiality dilemma: either the client has to trust the server with potentially sensitive input data, or the server has to share his commercially valuable model. Known remedies include homomorphic encryption, multi-party computation, or placing the entire model in a trusted enclave. None of these are suitable for large models. For two relevant use cases, we show that it is possible to keep all confidential model parameters in the last (dense) layers of deep neural networks. This allows us to split the model such that the confidential parts fit into a trusted enclave on the client side. We present the eNNclave toolchain to cut TensorFlow models at any layer, splitting them into public and enclaved layers. This preserves TensorFlow's performance optimizations and hardware support for public layers, while keeping the parameters of the enclaved layers private. Evaluations on several machine learning tasks spanning multiple domains show that fast inference is possible while keeping the sensitive model parameters confidential. Accuracy results are close to the baseline where all layers carry sensitive information and confirm our approach is practical.","PeriodicalId":132987,"journal":{"name":"Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"eNNclave\",\"authors\":\"Alexander Schlögl, Rainer Böhme\",\"doi\":\"10.1145/3411508.3421376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Outsourcing machine learning inference creates a confidentiality dilemma: either the client has to trust the server with potentially sensitive input data, or the server has to share his commercially valuable model. Known remedies include homomorphic encryption, multi-party computation, or placing the entire model in a trusted enclave. None of these are suitable for large models. For two relevant use cases, we show that it is possible to keep all confidential model parameters in the last (dense) layers of deep neural networks. This allows us to split the model such that the confidential parts fit into a trusted enclave on the client side. We present the eNNclave toolchain to cut TensorFlow models at any layer, splitting them into public and enclaved layers. This preserves TensorFlow's performance optimizations and hardware support for public layers, while keeping the parameters of the enclaved layers private. Evaluations on several machine learning tasks spanning multiple domains show that fast inference is possible while keeping the sensitive model parameters confidential. Accuracy results are close to the baseline where all layers carry sensitive information and confirm our approach is practical.\",\"PeriodicalId\":132987,\"journal\":{\"name\":\"Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3411508.3421376\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Workshop on Artificial Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411508.3421376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
eNNclave
Outsourcing machine learning inference creates a confidentiality dilemma: either the client has to trust the server with potentially sensitive input data, or the server has to share his commercially valuable model. Known remedies include homomorphic encryption, multi-party computation, or placing the entire model in a trusted enclave. None of these are suitable for large models. For two relevant use cases, we show that it is possible to keep all confidential model parameters in the last (dense) layers of deep neural networks. This allows us to split the model such that the confidential parts fit into a trusted enclave on the client side. We present the eNNclave toolchain to cut TensorFlow models at any layer, splitting them into public and enclaved layers. This preserves TensorFlow's performance optimizations and hardware support for public layers, while keeping the parameters of the enclaved layers private. Evaluations on several machine learning tasks spanning multiple domains show that fast inference is possible while keeping the sensitive model parameters confidential. Accuracy results are close to the baseline where all layers carry sensitive information and confirm our approach is practical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信