使用核最大似然估计的密集立体匹配

A. Jagmohan, Maneesh Kumar Singh, N. Ahuja
{"title":"使用核最大似然估计的密集立体匹配","authors":"A. Jagmohan, Maneesh Kumar Singh, N. Ahuja","doi":"10.1109/ICPR.2004.1334461","DOIUrl":null,"url":null,"abstract":"There has been much interest, recently, in the use of Bayesian formulations for solving image correspondence problems. For the two-view stereo matching problem, typical Bayesian formulations model the disparity prior as a pairwise Markov random field (MRF). Approximate inference algorithms for MRFs, such as graph cuts or belief propagation, treat the stereo matching problem as a labelling problem yielding discrete valued disparity estimates. In this paper, we propose a novel robust Bayesian formulation based on the recently proposed kernel maximum likelihood (KML) estimation framework. The proposed formulation uses probability density kernels to infer the posterior probability distribution of the disparity values. We present an efficient iterative algorithm, which uses a variational approach to form a KML estimate from the inferred distribution. The proposed algorithm yields continuous-valued disparity estimates, and is provably convergent. The proposed approach is validated on standard stereo pairs, with known sub-pixel disparity ground-truth data.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"172 1-2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Dense stereo matching using kernel maximum likelihood estimation\",\"authors\":\"A. Jagmohan, Maneesh Kumar Singh, N. Ahuja\",\"doi\":\"10.1109/ICPR.2004.1334461\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been much interest, recently, in the use of Bayesian formulations for solving image correspondence problems. For the two-view stereo matching problem, typical Bayesian formulations model the disparity prior as a pairwise Markov random field (MRF). Approximate inference algorithms for MRFs, such as graph cuts or belief propagation, treat the stereo matching problem as a labelling problem yielding discrete valued disparity estimates. In this paper, we propose a novel robust Bayesian formulation based on the recently proposed kernel maximum likelihood (KML) estimation framework. The proposed formulation uses probability density kernels to infer the posterior probability distribution of the disparity values. We present an efficient iterative algorithm, which uses a variational approach to form a KML estimate from the inferred distribution. The proposed algorithm yields continuous-valued disparity estimates, and is provably convergent. The proposed approach is validated on standard stereo pairs, with known sub-pixel disparity ground-truth data.\",\"PeriodicalId\":335842,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"volume\":\"172 1-2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.1334461\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1334461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

最近,人们对使用贝叶斯公式来解决图像对应问题很感兴趣。对于两视图立体匹配问题,典型的贝叶斯公式将视差先验建模为成对马尔可夫随机场(MRF)。mrf的近似推理算法,如图切割或信念传播,将立体匹配问题视为产生离散值视差估计的标记问题。在最近提出的核极大似然(KML)估计框架的基础上,提出了一种新的鲁棒贝叶斯公式。该方法利用概率密度核来推断视差值的后验概率分布。我们提出了一种有效的迭代算法,该算法使用变分方法从推断的分布中形成KML估计。提出的算法产生连续值视差估计,并证明其收敛性。该方法在已知亚像素差的标准立体对上进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dense stereo matching using kernel maximum likelihood estimation
There has been much interest, recently, in the use of Bayesian formulations for solving image correspondence problems. For the two-view stereo matching problem, typical Bayesian formulations model the disparity prior as a pairwise Markov random field (MRF). Approximate inference algorithms for MRFs, such as graph cuts or belief propagation, treat the stereo matching problem as a labelling problem yielding discrete valued disparity estimates. In this paper, we propose a novel robust Bayesian formulation based on the recently proposed kernel maximum likelihood (KML) estimation framework. The proposed formulation uses probability density kernels to infer the posterior probability distribution of the disparity values. We present an efficient iterative algorithm, which uses a variational approach to form a KML estimate from the inferred distribution. The proposed algorithm yields continuous-valued disparity estimates, and is provably convergent. The proposed approach is validated on standard stereo pairs, with known sub-pixel disparity ground-truth data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信