基于倒谱的运动图像分类算法

Sumanta Bhattacharyya, M. Mukul
{"title":"基于倒谱的运动图像分类算法","authors":"Sumanta Bhattacharyya, M. Mukul","doi":"10.1109/ICMETE.2016.140","DOIUrl":null,"url":null,"abstract":"A linear convolutive mixing model based real time motor imagery classification algorithm is proposed in this paper. The proposed cepstrum based method is very first and robust unsupervised learning algorithm, extremely useful for real time brain computer interface(BCI). The cepstrum is analyzed for estimation of combined action potential generated through the active synapses of raw electroencephalogram (EEG) signal. Maximum energy of the estimated cepstrum, is used as a feature. The extracted feature further subjected to simple Bayesian probabilistic classifier, for classification. The proposed method of EEG signal pre-processing and feature extraction outperforms the conventional temporal relative spectral power (TRSP) based movement imagery classification algorithm and BCI competition II results.","PeriodicalId":167368,"journal":{"name":"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Cepstrum Based Algorithm for Motor Imagery Classification\",\"authors\":\"Sumanta Bhattacharyya, M. Mukul\",\"doi\":\"10.1109/ICMETE.2016.140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A linear convolutive mixing model based real time motor imagery classification algorithm is proposed in this paper. The proposed cepstrum based method is very first and robust unsupervised learning algorithm, extremely useful for real time brain computer interface(BCI). The cepstrum is analyzed for estimation of combined action potential generated through the active synapses of raw electroencephalogram (EEG) signal. Maximum energy of the estimated cepstrum, is used as a feature. The extracted feature further subjected to simple Bayesian probabilistic classifier, for classification. The proposed method of EEG signal pre-processing and feature extraction outperforms the conventional temporal relative spectral power (TRSP) based movement imagery classification algorithm and BCI competition II results.\",\"PeriodicalId\":167368,\"journal\":{\"name\":\"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMETE.2016.140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMETE.2016.140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于线性卷积混合模型的实时运动图像分类算法。该方法是一种新颖的鲁棒无监督学习算法,对实时脑机接口(BCI)非常有用。分析倒谱用于估计原始脑电图信号活动突触产生的联合动作电位。用估计倒频谱的最大能量作为特征。将提取的特征进一步交由简单贝叶斯概率分类器进行分类。提出的脑电信号预处理和特征提取方法优于传统的基于时间相对谱功率(TRSP)的运动图像分类算法和BCI竞争II结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cepstrum Based Algorithm for Motor Imagery Classification
A linear convolutive mixing model based real time motor imagery classification algorithm is proposed in this paper. The proposed cepstrum based method is very first and robust unsupervised learning algorithm, extremely useful for real time brain computer interface(BCI). The cepstrum is analyzed for estimation of combined action potential generated through the active synapses of raw electroencephalogram (EEG) signal. Maximum energy of the estimated cepstrum, is used as a feature. The extracted feature further subjected to simple Bayesian probabilistic classifier, for classification. The proposed method of EEG signal pre-processing and feature extraction outperforms the conventional temporal relative spectral power (TRSP) based movement imagery classification algorithm and BCI competition II results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信