具有交叉随机效应的广义线性模型的两两似然方法

R. Bellio, C. Varin
{"title":"具有交叉随机效应的广义线性模型的两两似然方法","authors":"R. Bellio, C. Varin","doi":"10.1191/1471082X05st095oa","DOIUrl":null,"url":null,"abstract":"Inference in generalized linear models with crossed effects is often made cumbersome by the high-dimensional intractable integrals involved in the likelihood function. We propose an inferential strategy based on the pairwise likelihood, which only requires the computation of bivariate distributions. The benefits of our approach are the simplicity of implementation and the potential to handle large data sets. The estimators based on the pairwise likelihood are generally consistent and asymptotically normally distributed. The pairwise likelihood makes it possible to improve on standard inferential procedures by means of bootstrap methods. The performance of the proposed methodology is illustrated by simulations and application to the well-known salamander mating data set.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"56 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":"{\"title\":\"A pairwise likelihood approach to generalized linear models with crossed random effects\",\"authors\":\"R. Bellio, C. Varin\",\"doi\":\"10.1191/1471082X05st095oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inference in generalized linear models with crossed effects is often made cumbersome by the high-dimensional intractable integrals involved in the likelihood function. We propose an inferential strategy based on the pairwise likelihood, which only requires the computation of bivariate distributions. The benefits of our approach are the simplicity of implementation and the potential to handle large data sets. The estimators based on the pairwise likelihood are generally consistent and asymptotically normally distributed. The pairwise likelihood makes it possible to improve on standard inferential procedures by means of bootstrap methods. The performance of the proposed methodology is illustrated by simulations and application to the well-known salamander mating data set.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"56 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X05st095oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X05st095oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

在具有交叉效应的广义线性模型中,由于似然函数中包含高维难以处理的积分,常常使推理变得很麻烦。我们提出了一种基于两两似然的推理策略,它只需要计算二元分布。我们的方法的好处是简单的实现和处理大型数据集的潜力。基于两两似然的估计量通常是一致的,并且是渐近正态分布的。两两似然使得用自举方法改进标准推理程序成为可能。通过对已知的蝾螈交配数据集的仿真和应用,说明了所提出方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A pairwise likelihood approach to generalized linear models with crossed random effects
Inference in generalized linear models with crossed effects is often made cumbersome by the high-dimensional intractable integrals involved in the likelihood function. We propose an inferential strategy based on the pairwise likelihood, which only requires the computation of bivariate distributions. The benefits of our approach are the simplicity of implementation and the potential to handle large data sets. The estimators based on the pairwise likelihood are generally consistent and asymptotically normally distributed. The pairwise likelihood makes it possible to improve on standard inferential procedures by means of bootstrap methods. The performance of the proposed methodology is illustrated by simulations and application to the well-known salamander mating data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信