{"title":"一种高吞吐量无失速Golomb-Rice硬件解码器","authors":"R. Moussalli, W. Najjar, Xi Luo, Amna Khan","doi":"10.1109/FCCM.2013.9","DOIUrl":null,"url":null,"abstract":"Integer compression techniques can generally be classified as bit-wise and byte-wise approaches. Though at the cost of a larger processing time, bit-wise techniques typically result in a better compression ratio. The Golomb-Rice (GR) method is a bit-wise lossless technique applied to the compression of images, audio files and lists of inverted indices. However, since GR is a serial algorithm, decompression is regarded as a very slow process; to the best of our knowledge, all existing software and hardware native (non-modified) GR decoding engines operate bit-serially on the encoded stream. In this paper, we present (1) the first no-stall hardware architecture, capable of decompressing streams of integers compressed using the GR method, at a rate of several bytes (multiple integers) per hardware cycle; (2) a novel GR decoder based on the latter architecture is further detailed, operating at a peak rate of one integer per cycle. A thorough design space exploration study on the resulting resource utilization and throughput of the aforementioned approaches is presented. Furthermore, a performance study is provided, comparing software approaches to implementations of the novel hardware decoders. While occupying 10% of a Xilinx V6LX240T FPGA, the no-stall architecture core achieves a sustained throughput of over 7 Gbps.","PeriodicalId":269887,"journal":{"name":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A High Throughput No-Stall Golomb-Rice Hardware Decoder\",\"authors\":\"R. Moussalli, W. Najjar, Xi Luo, Amna Khan\",\"doi\":\"10.1109/FCCM.2013.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integer compression techniques can generally be classified as bit-wise and byte-wise approaches. Though at the cost of a larger processing time, bit-wise techniques typically result in a better compression ratio. The Golomb-Rice (GR) method is a bit-wise lossless technique applied to the compression of images, audio files and lists of inverted indices. However, since GR is a serial algorithm, decompression is regarded as a very slow process; to the best of our knowledge, all existing software and hardware native (non-modified) GR decoding engines operate bit-serially on the encoded stream. In this paper, we present (1) the first no-stall hardware architecture, capable of decompressing streams of integers compressed using the GR method, at a rate of several bytes (multiple integers) per hardware cycle; (2) a novel GR decoder based on the latter architecture is further detailed, operating at a peak rate of one integer per cycle. A thorough design space exploration study on the resulting resource utilization and throughput of the aforementioned approaches is presented. Furthermore, a performance study is provided, comparing software approaches to implementations of the novel hardware decoders. While occupying 10% of a Xilinx V6LX240T FPGA, the no-stall architecture core achieves a sustained throughput of over 7 Gbps.\",\"PeriodicalId\":269887,\"journal\":{\"name\":\"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2013.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2013.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A High Throughput No-Stall Golomb-Rice Hardware Decoder
Integer compression techniques can generally be classified as bit-wise and byte-wise approaches. Though at the cost of a larger processing time, bit-wise techniques typically result in a better compression ratio. The Golomb-Rice (GR) method is a bit-wise lossless technique applied to the compression of images, audio files and lists of inverted indices. However, since GR is a serial algorithm, decompression is regarded as a very slow process; to the best of our knowledge, all existing software and hardware native (non-modified) GR decoding engines operate bit-serially on the encoded stream. In this paper, we present (1) the first no-stall hardware architecture, capable of decompressing streams of integers compressed using the GR method, at a rate of several bytes (multiple integers) per hardware cycle; (2) a novel GR decoder based on the latter architecture is further detailed, operating at a peak rate of one integer per cycle. A thorough design space exploration study on the resulting resource utilization and throughput of the aforementioned approaches is presented. Furthermore, a performance study is provided, comparing software approaches to implementations of the novel hardware decoders. While occupying 10% of a Xilinx V6LX240T FPGA, the no-stall architecture core achieves a sustained throughput of over 7 Gbps.