一种高吞吐量无失速Golomb-Rice硬件解码器

R. Moussalli, W. Najjar, Xi Luo, Amna Khan
{"title":"一种高吞吐量无失速Golomb-Rice硬件解码器","authors":"R. Moussalli, W. Najjar, Xi Luo, Amna Khan","doi":"10.1109/FCCM.2013.9","DOIUrl":null,"url":null,"abstract":"Integer compression techniques can generally be classified as bit-wise and byte-wise approaches. Though at the cost of a larger processing time, bit-wise techniques typically result in a better compression ratio. The Golomb-Rice (GR) method is a bit-wise lossless technique applied to the compression of images, audio files and lists of inverted indices. However, since GR is a serial algorithm, decompression is regarded as a very slow process; to the best of our knowledge, all existing software and hardware native (non-modified) GR decoding engines operate bit-serially on the encoded stream. In this paper, we present (1) the first no-stall hardware architecture, capable of decompressing streams of integers compressed using the GR method, at a rate of several bytes (multiple integers) per hardware cycle; (2) a novel GR decoder based on the latter architecture is further detailed, operating at a peak rate of one integer per cycle. A thorough design space exploration study on the resulting resource utilization and throughput of the aforementioned approaches is presented. Furthermore, a performance study is provided, comparing software approaches to implementations of the novel hardware decoders. While occupying 10% of a Xilinx V6LX240T FPGA, the no-stall architecture core achieves a sustained throughput of over 7 Gbps.","PeriodicalId":269887,"journal":{"name":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A High Throughput No-Stall Golomb-Rice Hardware Decoder\",\"authors\":\"R. Moussalli, W. Najjar, Xi Luo, Amna Khan\",\"doi\":\"10.1109/FCCM.2013.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integer compression techniques can generally be classified as bit-wise and byte-wise approaches. Though at the cost of a larger processing time, bit-wise techniques typically result in a better compression ratio. The Golomb-Rice (GR) method is a bit-wise lossless technique applied to the compression of images, audio files and lists of inverted indices. However, since GR is a serial algorithm, decompression is regarded as a very slow process; to the best of our knowledge, all existing software and hardware native (non-modified) GR decoding engines operate bit-serially on the encoded stream. In this paper, we present (1) the first no-stall hardware architecture, capable of decompressing streams of integers compressed using the GR method, at a rate of several bytes (multiple integers) per hardware cycle; (2) a novel GR decoder based on the latter architecture is further detailed, operating at a peak rate of one integer per cycle. A thorough design space exploration study on the resulting resource utilization and throughput of the aforementioned approaches is presented. Furthermore, a performance study is provided, comparing software approaches to implementations of the novel hardware decoders. While occupying 10% of a Xilinx V6LX240T FPGA, the no-stall architecture core achieves a sustained throughput of over 7 Gbps.\",\"PeriodicalId\":269887,\"journal\":{\"name\":\"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2013.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2013.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

整数压缩技术通常可以分为位压缩和字节压缩两种方法。虽然以更长的处理时间为代价,但位技术通常会产生更好的压缩比。Golomb-Rice (GR)方法是一种用于压缩图像、音频文件和倒排索引列表的逐位无损技术。然而,由于GR是一个串行算法,解压缩被认为是一个非常缓慢的过程;据我们所知,所有现有的软件和硬件原生(未修改的)GR解码引擎在编码流上按位串行操作。在本文中,我们提出了(1)第一个无停机硬件架构,能够以每个硬件周期几个字节(多个整数)的速率对使用GR方法压缩的整数流进行解压缩;(2)进一步详细介绍了基于后一种结构的新型GR解码器,其峰值速率为每周期一个整数。对上述方法的资源利用率和吞吐量进行了全面的设计空间探索研究。此外,还提供了性能研究,比较了新型硬件解码器的软件实现方法。虽然只占Xilinx V6LX240T FPGA的10%,但无停机架构核心实现了超过7 Gbps的持续吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A High Throughput No-Stall Golomb-Rice Hardware Decoder
Integer compression techniques can generally be classified as bit-wise and byte-wise approaches. Though at the cost of a larger processing time, bit-wise techniques typically result in a better compression ratio. The Golomb-Rice (GR) method is a bit-wise lossless technique applied to the compression of images, audio files and lists of inverted indices. However, since GR is a serial algorithm, decompression is regarded as a very slow process; to the best of our knowledge, all existing software and hardware native (non-modified) GR decoding engines operate bit-serially on the encoded stream. In this paper, we present (1) the first no-stall hardware architecture, capable of decompressing streams of integers compressed using the GR method, at a rate of several bytes (multiple integers) per hardware cycle; (2) a novel GR decoder based on the latter architecture is further detailed, operating at a peak rate of one integer per cycle. A thorough design space exploration study on the resulting resource utilization and throughput of the aforementioned approaches is presented. Furthermore, a performance study is provided, comparing software approaches to implementations of the novel hardware decoders. While occupying 10% of a Xilinx V6LX240T FPGA, the no-stall architecture core achieves a sustained throughput of over 7 Gbps.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信