石墨烯包覆铜纳米粒子作为微尺度铜浆的多功能纳米填料的探索

A. Zehri, T. Nilsson, Yifeng Fu, Johan Liu
{"title":"石墨烯包覆铜纳米粒子作为微尺度铜浆的多功能纳米填料的探索","authors":"A. Zehri, T. Nilsson, Yifeng Fu, Johan Liu","doi":"10.23919/empc53418.2021.9584993","DOIUrl":null,"url":null,"abstract":"The current development of the electronics system requires capabilities beyond conventional heat transfer approaches. New solutions based on advanced materials are being developed to tackle the current challenges in the development of electronics systems and the nanoscale 2D materials such as graphene are at the centre of the effort to exploit the intrinsic properties of carbon nanomaterials. In this work, we introduce a new concept of graphene-coated copper nanoparticles (G-CuNPs) and explore their multifunctional potential applications in metallic based paste used in electronics. The nanoscale powder was found to present a core/shell structure with the copper particle at its core and a disordered multilayer graphene structure continuously coating its surface. The composition of the particles was analysed, and the presence of the coating was found to provide oxidation protection for the metallic core. Thermogravimetric analysis (TGA) showed an additional role of the G-CuNPs with a reduction effect without the use of an additional reducing agent. Furthermore, due to the combined effect of the size of the particles and the oxidation-free metallic core, Differential Scanning Calorimetry (DSC) analysis revealed a melting depression at temperatures as low as $155 ^{\\circ}\\mathrm{C}$. Finally, the mechanical properties of the nanocoating were investigated and the results showed an enhanced ductility at the surface of the particles due to the presence of the multi-layered graphene structure, which might be exploited for powder flow and lubrication effect.","PeriodicalId":348887,"journal":{"name":"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Graphene Coated Copper Nanoparticles as a multifunctional Nanofiller for Micro-Scaled Copper Paste\",\"authors\":\"A. Zehri, T. Nilsson, Yifeng Fu, Johan Liu\",\"doi\":\"10.23919/empc53418.2021.9584993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current development of the electronics system requires capabilities beyond conventional heat transfer approaches. New solutions based on advanced materials are being developed to tackle the current challenges in the development of electronics systems and the nanoscale 2D materials such as graphene are at the centre of the effort to exploit the intrinsic properties of carbon nanomaterials. In this work, we introduce a new concept of graphene-coated copper nanoparticles (G-CuNPs) and explore their multifunctional potential applications in metallic based paste used in electronics. The nanoscale powder was found to present a core/shell structure with the copper particle at its core and a disordered multilayer graphene structure continuously coating its surface. The composition of the particles was analysed, and the presence of the coating was found to provide oxidation protection for the metallic core. Thermogravimetric analysis (TGA) showed an additional role of the G-CuNPs with a reduction effect without the use of an additional reducing agent. Furthermore, due to the combined effect of the size of the particles and the oxidation-free metallic core, Differential Scanning Calorimetry (DSC) analysis revealed a melting depression at temperatures as low as $155 ^{\\\\circ}\\\\mathrm{C}$. Finally, the mechanical properties of the nanocoating were investigated and the results showed an enhanced ductility at the surface of the particles due to the presence of the multi-layered graphene structure, which might be exploited for powder flow and lubrication effect.\",\"PeriodicalId\":348887,\"journal\":{\"name\":\"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/empc53418.2021.9584993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/empc53418.2021.9584993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当前电子系统的发展需要超越传统传热方法的能力。基于先进材料的新解决方案正在开发中,以解决当前电子系统发展中的挑战,而石墨烯等纳米级二维材料是开发碳纳米材料固有特性的核心。本文介绍了石墨烯包覆铜纳米粒子(G-CuNPs)的新概念,并探讨了其在电子行业金属基浆料中的多功能应用潜力。纳米级粉末呈现以铜粒子为核心的核壳结构,其表面连续包裹着无序的多层石墨烯结构。分析了颗粒的组成,发现涂层的存在为金属芯提供了氧化保护。热重分析(TGA)表明,G-CuNPs在不使用额外还原剂的情况下具有还原效果。此外,由于颗粒大小和无氧化金属芯的综合影响,差示扫描量热法(DSC)分析显示,在低至155 ^{\circ}\ mathm {C}$的温度下,熔点下降。最后,研究了纳米涂层的力学性能,结果表明,由于多层石墨烯结构的存在,颗粒表面的延展性增强,这可能用于粉末流动和润滑效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Graphene Coated Copper Nanoparticles as a multifunctional Nanofiller for Micro-Scaled Copper Paste
The current development of the electronics system requires capabilities beyond conventional heat transfer approaches. New solutions based on advanced materials are being developed to tackle the current challenges in the development of electronics systems and the nanoscale 2D materials such as graphene are at the centre of the effort to exploit the intrinsic properties of carbon nanomaterials. In this work, we introduce a new concept of graphene-coated copper nanoparticles (G-CuNPs) and explore their multifunctional potential applications in metallic based paste used in electronics. The nanoscale powder was found to present a core/shell structure with the copper particle at its core and a disordered multilayer graphene structure continuously coating its surface. The composition of the particles was analysed, and the presence of the coating was found to provide oxidation protection for the metallic core. Thermogravimetric analysis (TGA) showed an additional role of the G-CuNPs with a reduction effect without the use of an additional reducing agent. Furthermore, due to the combined effect of the size of the particles and the oxidation-free metallic core, Differential Scanning Calorimetry (DSC) analysis revealed a melting depression at temperatures as low as $155 ^{\circ}\mathrm{C}$. Finally, the mechanical properties of the nanocoating were investigated and the results showed an enhanced ductility at the surface of the particles due to the presence of the multi-layered graphene structure, which might be exploited for powder flow and lubrication effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信