从纽带强度到功能:社交网络中的家庭位置估计

Jinpeng Chen, Yu Liu, Ming Zou
{"title":"从纽带强度到功能:社交网络中的家庭位置估计","authors":"Jinpeng Chen, Yu Liu, Ming Zou","doi":"10.1109/ComComAp.2014.7017172","DOIUrl":null,"url":null,"abstract":"In this paper, we focus on the problem of estimating users' home locations in the Twitter network. In order to solve the aforementioned problem, we propose a Social Tie Factor Graph Model (STFGM) for estimating a Twitter user's city-level location based on the following network, user-centric data and tie strength. In STFG, relationships between users and locations in social network are modeled as nodes, the attributes and correlations are modeled as factors. An efficient algorithm is proposed to learn model parameters and to predict unknown relationships. We evaluate our proposed method on large Twitter networks. Experimental results demonstrate that our proposed method significantly outperforms several state-of-the-art methods and achieves the best performance.","PeriodicalId":422906,"journal":{"name":"2014 IEEE Computers, Communications and IT Applications Conference","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"From tie strength to function: Home location estimation in social network\",\"authors\":\"Jinpeng Chen, Yu Liu, Ming Zou\",\"doi\":\"10.1109/ComComAp.2014.7017172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we focus on the problem of estimating users' home locations in the Twitter network. In order to solve the aforementioned problem, we propose a Social Tie Factor Graph Model (STFGM) for estimating a Twitter user's city-level location based on the following network, user-centric data and tie strength. In STFG, relationships between users and locations in social network are modeled as nodes, the attributes and correlations are modeled as factors. An efficient algorithm is proposed to learn model parameters and to predict unknown relationships. We evaluate our proposed method on large Twitter networks. Experimental results demonstrate that our proposed method significantly outperforms several state-of-the-art methods and achieves the best performance.\",\"PeriodicalId\":422906,\"journal\":{\"name\":\"2014 IEEE Computers, Communications and IT Applications Conference\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Computers, Communications and IT Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ComComAp.2014.7017172\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Computers, Communications and IT Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComComAp.2014.7017172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文主要研究Twitter网络中用户家的位置估计问题。为了解决上述问题,我们提出了一种基于以下网络、以用户为中心的数据和联系强度的社交联系因素图模型(Social Tie Factor Graph Model, STFGM)来估计Twitter用户的城市级别位置。在STFG中,社交网络中用户和位置之间的关系被建模为节点,属性和相关性被建模为因素。提出了一种有效的模型参数学习和未知关系预测算法。我们在大型Twitter网络上评估了我们提出的方法。实验结果表明,我们提出的方法明显优于几种最先进的方法,并达到了最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From tie strength to function: Home location estimation in social network
In this paper, we focus on the problem of estimating users' home locations in the Twitter network. In order to solve the aforementioned problem, we propose a Social Tie Factor Graph Model (STFGM) for estimating a Twitter user's city-level location based on the following network, user-centric data and tie strength. In STFG, relationships between users and locations in social network are modeled as nodes, the attributes and correlations are modeled as factors. An efficient algorithm is proposed to learn model parameters and to predict unknown relationships. We evaluate our proposed method on large Twitter networks. Experimental results demonstrate that our proposed method significantly outperforms several state-of-the-art methods and achieves the best performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信