跳跃扩散的无偏模拟估计

Guanting Chen, Alexander D. Shkolnik, K. Giesecke
{"title":"跳跃扩散的无偏模拟估计","authors":"Guanting Chen, Alexander D. Shkolnik, K. Giesecke","doi":"10.1109/WSC40007.2019.9004767","DOIUrl":null,"url":null,"abstract":"We develop and analyze an unbiased Monte Carlo estimator for a functional of a one-dimensional jump-diffusion process with a state-dependent drift, volatility, jump intensity and jump size. The approach combines a change of measure to sample the jumps with the parametrix method to simulate the diffusions. Under regularity conditions on the coefficient functions as well as the functional, we prove the unbiasedness and the finite variance property of the estimator. Numerical experiments illustrate the performance of the scheme.","PeriodicalId":127025,"journal":{"name":"2019 Winter Simulation Conference (WSC)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Unbiased Simulation Estimators for Jump-Diffusions\",\"authors\":\"Guanting Chen, Alexander D. Shkolnik, K. Giesecke\",\"doi\":\"10.1109/WSC40007.2019.9004767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop and analyze an unbiased Monte Carlo estimator for a functional of a one-dimensional jump-diffusion process with a state-dependent drift, volatility, jump intensity and jump size. The approach combines a change of measure to sample the jumps with the parametrix method to simulate the diffusions. Under regularity conditions on the coefficient functions as well as the functional, we prove the unbiasedness and the finite variance property of the estimator. Numerical experiments illustrate the performance of the scheme.\",\"PeriodicalId\":127025,\"journal\":{\"name\":\"2019 Winter Simulation Conference (WSC)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC40007.2019.9004767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC40007.2019.9004767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们开发并分析了具有状态依赖漂移、挥发性、跳跃强度和跳跃大小的一维跳跃-扩散过程泛函的无偏蒙特卡罗估计。该方法结合了测量变化对跳变的采样和参数矩阵法来模拟扩散。在系数函数和泛函的正则性条件下,证明了估计量的无偏性和有限方差性质。数值实验验证了该方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unbiased Simulation Estimators for Jump-Diffusions
We develop and analyze an unbiased Monte Carlo estimator for a functional of a one-dimensional jump-diffusion process with a state-dependent drift, volatility, jump intensity and jump size. The approach combines a change of measure to sample the jumps with the parametrix method to simulate the diffusions. Under regularity conditions on the coefficient functions as well as the functional, we prove the unbiasedness and the finite variance property of the estimator. Numerical experiments illustrate the performance of the scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信