利用机器学习模型预测火焰温度

Goutam Agrawal, Rutuparnna Mishra, Anshit Ransingh, S. Chakravarty
{"title":"利用机器学习模型预测火焰温度","authors":"Goutam Agrawal, Rutuparnna Mishra, Anshit Ransingh, S. Chakravarty","doi":"10.1109/INDISCON50162.2020.00042","DOIUrl":null,"url":null,"abstract":"The intensity or amount of heat present in any material, substance, or object is known as temperature. The process of measuring temperature is a tiresome and complex task from any visible heat source. The process of measuring temperature is known as thermometry. It plays a vital role in various industrial and manufacturing processes. There are several devices or gadgets present which are used for measuring temperature like a thermistor, Resistance Temperature Detector (RTD), infrared thermometer, thermocouples, pyrometers, etc. Every temperature measuring instrument has its demerits. While measuring temperature in some devices, one must be very alert because it is a necessity to check that the temperature of the material or substance should be less than or equal to the instrument temperature. In some instruments, the high temperature reduces productivity, and the efficiency of the sensors present in it. Some devices face the drawback of difference in temperature because in such types of devices there is a threshold temperature. If the temperature exceeds the threshold temperature in such a case, the measured temperature will differ with the temperature of the system. Under such circumstances, it will deviate from the original heat transfer property. To overcome all these drawbacks a machine learning model is proposed to detect approx. temperature using the color-temperature correlation approach. In this proposed system, histogram backprojection is used for pre-processing of the input image to derive the color of the flame. To predict the temperature, Support Vector Machine (SVM) and Artificial Neural Network (ANN) have been used and compared. Simulation results show that Support Vector Machine outperforms Artificial Neural Network.","PeriodicalId":371571,"journal":{"name":"2020 IEEE India Council International Subsections Conference (INDISCON)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Flame Temperature Prediction Using Machine Learning Model\",\"authors\":\"Goutam Agrawal, Rutuparnna Mishra, Anshit Ransingh, S. Chakravarty\",\"doi\":\"10.1109/INDISCON50162.2020.00042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The intensity or amount of heat present in any material, substance, or object is known as temperature. The process of measuring temperature is a tiresome and complex task from any visible heat source. The process of measuring temperature is known as thermometry. It plays a vital role in various industrial and manufacturing processes. There are several devices or gadgets present which are used for measuring temperature like a thermistor, Resistance Temperature Detector (RTD), infrared thermometer, thermocouples, pyrometers, etc. Every temperature measuring instrument has its demerits. While measuring temperature in some devices, one must be very alert because it is a necessity to check that the temperature of the material or substance should be less than or equal to the instrument temperature. In some instruments, the high temperature reduces productivity, and the efficiency of the sensors present in it. Some devices face the drawback of difference in temperature because in such types of devices there is a threshold temperature. If the temperature exceeds the threshold temperature in such a case, the measured temperature will differ with the temperature of the system. Under such circumstances, it will deviate from the original heat transfer property. To overcome all these drawbacks a machine learning model is proposed to detect approx. temperature using the color-temperature correlation approach. In this proposed system, histogram backprojection is used for pre-processing of the input image to derive the color of the flame. To predict the temperature, Support Vector Machine (SVM) and Artificial Neural Network (ANN) have been used and compared. Simulation results show that Support Vector Machine outperforms Artificial Neural Network.\",\"PeriodicalId\":371571,\"journal\":{\"name\":\"2020 IEEE India Council International Subsections Conference (INDISCON)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE India Council International Subsections Conference (INDISCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDISCON50162.2020.00042\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Council International Subsections Conference (INDISCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDISCON50162.2020.00042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

存在于任何材料、物质或物体中的热量的强度或数量称为温度。在任何可见热源下测量温度的过程都是一项繁琐而复杂的任务。测量温度的过程称为测温。它在各种工业和制造过程中起着至关重要的作用。有几种设备或小工具用于测量温度,如热敏电阻,电阻温度检测器(RTD),红外温度计,热电偶,高温计等。每种温度测量仪器都有其缺点。在某些设备中测量温度时,必须非常警惕,因为必须检查材料或物质的温度应小于或等于仪器温度。在一些仪器中,高温降低了生产率,也降低了传感器的效率。一些设备面临着温差的缺点,因为在这类设备中存在一个阈值温度。当温度超过阈值时,测量到的温度会与系统实际温度不一致。在这种情况下,它会偏离原来的传热性质。为了克服所有这些缺点,提出了一种机器学习模型来检测近似。温度采用色温相关法。在该系统中,使用直方图反向投影对输入图像进行预处理,从而得到火焰的颜色。采用支持向量机(SVM)和人工神经网络(ANN)进行了温度预测,并进行了比较。仿真结果表明,支持向量机优于人工神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flame Temperature Prediction Using Machine Learning Model
The intensity or amount of heat present in any material, substance, or object is known as temperature. The process of measuring temperature is a tiresome and complex task from any visible heat source. The process of measuring temperature is known as thermometry. It plays a vital role in various industrial and manufacturing processes. There are several devices or gadgets present which are used for measuring temperature like a thermistor, Resistance Temperature Detector (RTD), infrared thermometer, thermocouples, pyrometers, etc. Every temperature measuring instrument has its demerits. While measuring temperature in some devices, one must be very alert because it is a necessity to check that the temperature of the material or substance should be less than or equal to the instrument temperature. In some instruments, the high temperature reduces productivity, and the efficiency of the sensors present in it. Some devices face the drawback of difference in temperature because in such types of devices there is a threshold temperature. If the temperature exceeds the threshold temperature in such a case, the measured temperature will differ with the temperature of the system. Under such circumstances, it will deviate from the original heat transfer property. To overcome all these drawbacks a machine learning model is proposed to detect approx. temperature using the color-temperature correlation approach. In this proposed system, histogram backprojection is used for pre-processing of the input image to derive the color of the flame. To predict the temperature, Support Vector Machine (SVM) and Artificial Neural Network (ANN) have been used and compared. Simulation results show that Support Vector Machine outperforms Artificial Neural Network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信