{"title":"在易失性资源上映射紧密耦合的应用","authors":"H. Casanova, F. Dufossé, Y. Robert, F. Vivien","doi":"10.1109/PDP.2013.26","DOIUrl":null,"url":null,"abstract":"Platforms that comprise volatile processors, such as desktop grids, have been traditionally used for executing independent-task applications. In this work we study the scheduling of tightly-coupled iterative master-worker applications onto volatile processors. The main challenge is that workers must be simultaneously available for the application to make progress. We consider two additional complications: one should take into account that workers can become temporarily reclaimed and, for data-intensive applications, one should account for the limited bandwidth between the master and the workers. In this context, our first contribution is a theoretical study of the scheduling problem in its off-line version, i.e., when processor availability is known in advance. Even in this case the problem is NP-hard. Our second contribution is an analytical approximation of the expectation of the time needed by a set of workers to complete a set of tasks and of the probability of success of this computation. This approximation relies on a Markovian assumption for the temporal availability of processors. Our third contribution is a set of heuristics, some of which use the above approximation to favor reliable processors in a sensible manner. We evaluate these heuristics in simulation. We identify some heuristics that significantly outperform their competitors and derive heuristic design guidelines.","PeriodicalId":202977,"journal":{"name":"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mapping Tightly-Coupled Applications on Volatile Resources\",\"authors\":\"H. Casanova, F. Dufossé, Y. Robert, F. Vivien\",\"doi\":\"10.1109/PDP.2013.26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Platforms that comprise volatile processors, such as desktop grids, have been traditionally used for executing independent-task applications. In this work we study the scheduling of tightly-coupled iterative master-worker applications onto volatile processors. The main challenge is that workers must be simultaneously available for the application to make progress. We consider two additional complications: one should take into account that workers can become temporarily reclaimed and, for data-intensive applications, one should account for the limited bandwidth between the master and the workers. In this context, our first contribution is a theoretical study of the scheduling problem in its off-line version, i.e., when processor availability is known in advance. Even in this case the problem is NP-hard. Our second contribution is an analytical approximation of the expectation of the time needed by a set of workers to complete a set of tasks and of the probability of success of this computation. This approximation relies on a Markovian assumption for the temporal availability of processors. Our third contribution is a set of heuristics, some of which use the above approximation to favor reliable processors in a sensible manner. We evaluate these heuristics in simulation. We identify some heuristics that significantly outperform their competitors and derive heuristic design guidelines.\",\"PeriodicalId\":202977,\"journal\":{\"name\":\"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2013.26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2013.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mapping Tightly-Coupled Applications on Volatile Resources
Platforms that comprise volatile processors, such as desktop grids, have been traditionally used for executing independent-task applications. In this work we study the scheduling of tightly-coupled iterative master-worker applications onto volatile processors. The main challenge is that workers must be simultaneously available for the application to make progress. We consider two additional complications: one should take into account that workers can become temporarily reclaimed and, for data-intensive applications, one should account for the limited bandwidth between the master and the workers. In this context, our first contribution is a theoretical study of the scheduling problem in its off-line version, i.e., when processor availability is known in advance. Even in this case the problem is NP-hard. Our second contribution is an analytical approximation of the expectation of the time needed by a set of workers to complete a set of tasks and of the probability of success of this computation. This approximation relies on a Markovian assumption for the temporal availability of processors. Our third contribution is a set of heuristics, some of which use the above approximation to favor reliable processors in a sensible manner. We evaluate these heuristics in simulation. We identify some heuristics that significantly outperform their competitors and derive heuristic design guidelines.