{"title":"基于二阶Volterra滤波器的滤波- x Lyapunov算法非线性主动噪声控制","authors":"Haiquan Zhao, Jiashu Zhang","doi":"10.1109/ICCT.2008.4716090","DOIUrl":null,"url":null,"abstract":"This paper presents a filtered-X Lyapunov algorithm for nonlinear active noise control (ANC) using second-order Volterra filter-based the filter-blank structure. Unlike many adaptive filtering schemes using gradient algorithm, a Lyapunov function of the tracking error is first defined, and second-order Volterra filter coefficients are adjusted using Lyapunov stability theory so that the error converges to zero asymptotically. Moreover, it has fast error convergence property and its stability is guaranteed by Lyapunov stability theory.","PeriodicalId":259577,"journal":{"name":"2008 11th IEEE International Conference on Communication Technology","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Filtered-X Lyapunov algorithm for nonlinear active noise control using second-order Volterra filter\",\"authors\":\"Haiquan Zhao, Jiashu Zhang\",\"doi\":\"10.1109/ICCT.2008.4716090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a filtered-X Lyapunov algorithm for nonlinear active noise control (ANC) using second-order Volterra filter-based the filter-blank structure. Unlike many adaptive filtering schemes using gradient algorithm, a Lyapunov function of the tracking error is first defined, and second-order Volterra filter coefficients are adjusted using Lyapunov stability theory so that the error converges to zero asymptotically. Moreover, it has fast error convergence property and its stability is guaranteed by Lyapunov stability theory.\",\"PeriodicalId\":259577,\"journal\":{\"name\":\"2008 11th IEEE International Conference on Communication Technology\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 11th IEEE International Conference on Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCT.2008.4716090\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 11th IEEE International Conference on Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCT.2008.4716090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
本文提出了一种基于二阶Volterra滤波器的滤波- x Lyapunov算法用于非线性主动噪声控制(ANC)。与许多使用梯度算法的自适应滤波方案不同,首先定义跟踪误差的Lyapunov函数,并利用Lyapunov稳定性理论调整二阶Volterra滤波器系数,使误差渐近收敛于零。该方法具有较快的误差收敛性,并通过李雅普诺夫稳定性理论保证了其稳定性。
Filtered-X Lyapunov algorithm for nonlinear active noise control using second-order Volterra filter
This paper presents a filtered-X Lyapunov algorithm for nonlinear active noise control (ANC) using second-order Volterra filter-based the filter-blank structure. Unlike many adaptive filtering schemes using gradient algorithm, a Lyapunov function of the tracking error is first defined, and second-order Volterra filter coefficients are adjusted using Lyapunov stability theory so that the error converges to zero asymptotically. Moreover, it has fast error convergence property and its stability is guaranteed by Lyapunov stability theory.