XOR-CiM:二进制神经网络加速的高效sot - mram计算设计

M. Morsali, Ranyang Zhou, Sepehr Tabrizchi, A. Roohi, Shaahin Angizi
{"title":"XOR-CiM:二进制神经网络加速的高效sot - mram计算设计","authors":"M. Morsali, Ranyang Zhou, Sepehr Tabrizchi, A. Roohi, Shaahin Angizi","doi":"10.1109/ISQED57927.2023.10129322","DOIUrl":null,"url":null,"abstract":"In this work, we leverage the uni-polar switching behavior of Spin-Orbit Torque Magnetic Random Access Memory (SOT-MRAM) to develop an efficient digital Computing-in-Memory (CiM) platform named XOR-CiM. XOR-CiM converts typical MRAM sub-arrays to massively parallel computational cores with ultra-high bandwidth, greatly reducing energy consumption dealing with convolutional layers and accelerating X(N)OR-intensive Binary Neural Networks (BNNs) inference. With a similar inference accuracy to digital CiMs, XOR-CiM achieves ∼4.5× and 1.8× higher energy-efficiency and speed-up compared to the recent MRAM-based CiM platforms.","PeriodicalId":315053,"journal":{"name":"2023 24th International Symposium on Quality Electronic Design (ISQED)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"XOR-CiM: An Efficient Computing-in-SOT-MRAM Design for Binary Neural Network Acceleration\",\"authors\":\"M. Morsali, Ranyang Zhou, Sepehr Tabrizchi, A. Roohi, Shaahin Angizi\",\"doi\":\"10.1109/ISQED57927.2023.10129322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we leverage the uni-polar switching behavior of Spin-Orbit Torque Magnetic Random Access Memory (SOT-MRAM) to develop an efficient digital Computing-in-Memory (CiM) platform named XOR-CiM. XOR-CiM converts typical MRAM sub-arrays to massively parallel computational cores with ultra-high bandwidth, greatly reducing energy consumption dealing with convolutional layers and accelerating X(N)OR-intensive Binary Neural Networks (BNNs) inference. With a similar inference accuracy to digital CiMs, XOR-CiM achieves ∼4.5× and 1.8× higher energy-efficiency and speed-up compared to the recent MRAM-based CiM platforms.\",\"PeriodicalId\":315053,\"journal\":{\"name\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 24th International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED57927.2023.10129322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 24th International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED57927.2023.10129322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们利用自旋轨道扭矩磁随机存取存储器(SOT-MRAM)的单极开关行为来开发一种高效的数字内存中计算(CiM)平台,称为XOR-CiM。XOR-CiM将典型的MRAM子阵列转换为具有超高带宽的大规模并行计算核心,大大降低了处理卷积层的能耗,并加速了X(N) or密集型二进制神经网络(bnn)的推理。XOR-CiM具有与数字CiM相似的推理精度,与最近基于mram的CiM平台相比,XOR-CiM的能效和速度提高了约4.5倍和1.8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
XOR-CiM: An Efficient Computing-in-SOT-MRAM Design for Binary Neural Network Acceleration
In this work, we leverage the uni-polar switching behavior of Spin-Orbit Torque Magnetic Random Access Memory (SOT-MRAM) to develop an efficient digital Computing-in-Memory (CiM) platform named XOR-CiM. XOR-CiM converts typical MRAM sub-arrays to massively parallel computational cores with ultra-high bandwidth, greatly reducing energy consumption dealing with convolutional layers and accelerating X(N)OR-intensive Binary Neural Networks (BNNs) inference. With a similar inference accuracy to digital CiMs, XOR-CiM achieves ∼4.5× and 1.8× higher energy-efficiency and speed-up compared to the recent MRAM-based CiM platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信