Yingzhi Zhang, Yutong Zhou, Fang Yang, Zhiqiong Wang, Mo Sun
{"title":"基于最大发生概率的数控机床关键故障传播路径识别","authors":"Yingzhi Zhang, Yutong Zhou, Fang Yang, Zhiqiong Wang, Mo Sun","doi":"10.17531/ein/169887","DOIUrl":null,"url":null,"abstract":"In order to revise the deviation caused by ignoring the dynamic character of fault propagation in traditional fault propagation path identification methods, a method based on the maximum occurrence probability is proposed to identify the key fault propagation path. Occurrence probability of fault propagation path is defined by dynamic importance, dynamic fault propagation probability and fault rate. Taking the fault information of CNC machine tools which subject to Weibull distribution as an example, this method has been proven to be reasonable through comparative analysis. Result shows that the key fault propagation path of CNC machine tools is not unique, but changes with time. Before 1000 hours, key fault propagation path is electrical component (E) to mechanical component (M); after 1000 hours, key fault propagation path is auxiliary component (A) to mechanical component (M). This change should be taken into account when developing maintenance strategies and conducting reliability analysis.","PeriodicalId":335030,"journal":{"name":"Eksploatacja i Niezawodność – Maintenance and Reliability","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Key fault propagation path identification of CNC machine tools based on maximum occurrence probability\",\"authors\":\"Yingzhi Zhang, Yutong Zhou, Fang Yang, Zhiqiong Wang, Mo Sun\",\"doi\":\"10.17531/ein/169887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to revise the deviation caused by ignoring the dynamic character of fault propagation in traditional fault propagation path identification methods, a method based on the maximum occurrence probability is proposed to identify the key fault propagation path. Occurrence probability of fault propagation path is defined by dynamic importance, dynamic fault propagation probability and fault rate. Taking the fault information of CNC machine tools which subject to Weibull distribution as an example, this method has been proven to be reasonable through comparative analysis. Result shows that the key fault propagation path of CNC machine tools is not unique, but changes with time. Before 1000 hours, key fault propagation path is electrical component (E) to mechanical component (M); after 1000 hours, key fault propagation path is auxiliary component (A) to mechanical component (M). This change should be taken into account when developing maintenance strategies and conducting reliability analysis.\",\"PeriodicalId\":335030,\"journal\":{\"name\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eksploatacja i Niezawodność – Maintenance and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17531/ein/169887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eksploatacja i Niezawodność – Maintenance and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17531/ein/169887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Key fault propagation path identification of CNC machine tools based on maximum occurrence probability
In order to revise the deviation caused by ignoring the dynamic character of fault propagation in traditional fault propagation path identification methods, a method based on the maximum occurrence probability is proposed to identify the key fault propagation path. Occurrence probability of fault propagation path is defined by dynamic importance, dynamic fault propagation probability and fault rate. Taking the fault information of CNC machine tools which subject to Weibull distribution as an example, this method has been proven to be reasonable through comparative analysis. Result shows that the key fault propagation path of CNC machine tools is not unique, but changes with time. Before 1000 hours, key fault propagation path is electrical component (E) to mechanical component (M); after 1000 hours, key fault propagation path is auxiliary component (A) to mechanical component (M). This change should be taken into account when developing maintenance strategies and conducting reliability analysis.