{"title":"基于加权平均最优位置的量子粒子群优化设计高通FIR滤波器","authors":"Supriya Dhabal, Saptarshi Sengupta","doi":"10.1109/C3IT.2015.7060145","DOIUrl":null,"url":null,"abstract":"Quantum-behaved particle swarm optimization (QPSO) algorithm theoretically guarantees global convergence and has been implemented on a wide suite of continuous optimization problems. In this paper, the nonlinear multimodal optimization problem of high pass FIR filter design is investigated using the weighted mean best QPSO algorithm (WQPSO). The results are compared with competitive techniques such as QPSO keeping PSO and PM as references. It is seen that WQPSO statistically outperforms QPSO in terms of convergence characteristics and ripple performance of the designed filter.","PeriodicalId":402311,"journal":{"name":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Efficient design of high pass FIR filter using quantum-behaved particle swarm optimization with weighted mean best position\",\"authors\":\"Supriya Dhabal, Saptarshi Sengupta\",\"doi\":\"10.1109/C3IT.2015.7060145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum-behaved particle swarm optimization (QPSO) algorithm theoretically guarantees global convergence and has been implemented on a wide suite of continuous optimization problems. In this paper, the nonlinear multimodal optimization problem of high pass FIR filter design is investigated using the weighted mean best QPSO algorithm (WQPSO). The results are compared with competitive techniques such as QPSO keeping PSO and PM as references. It is seen that WQPSO statistically outperforms QPSO in terms of convergence characteristics and ripple performance of the designed filter.\",\"PeriodicalId\":402311,\"journal\":{\"name\":\"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)\",\"volume\":\"141 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/C3IT.2015.7060145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/C3IT.2015.7060145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient design of high pass FIR filter using quantum-behaved particle swarm optimization with weighted mean best position
Quantum-behaved particle swarm optimization (QPSO) algorithm theoretically guarantees global convergence and has been implemented on a wide suite of continuous optimization problems. In this paper, the nonlinear multimodal optimization problem of high pass FIR filter design is investigated using the weighted mean best QPSO algorithm (WQPSO). The results are compared with competitive techniques such as QPSO keeping PSO and PM as references. It is seen that WQPSO statistically outperforms QPSO in terms of convergence characteristics and ripple performance of the designed filter.