基于卷积自编码器的天空图像预测模型在太阳能光伏发电功率预测中的应用

Hua Chai, Z. Zhen, Kangping Li, Fei Wang, P. Dehghanian, M. Shafie‐khah, J. Catalão
{"title":"基于卷积自编码器的天空图像预测模型在太阳能光伏发电功率预测中的应用","authors":"Hua Chai, Z. Zhen, Kangping Li, Fei Wang, P. Dehghanian, M. Shafie‐khah, J. Catalão","doi":"10.1109/IAS44978.2020.9334923","DOIUrl":null,"url":null,"abstract":"The precise minute time scale forecasting of an individual Photovoltaic power station output relies on accurate sky image prediction. To avoid the two deficiencies of traditional digital image processing technology (DIPT) in predicting sky images: relatively limited input spatiotemporal information and linear extrapolation of images, convolutional auto-encoder (CAE) based sky image prediction models are proposed according to the spatiotemporal feature extraction ability of 2D and 3D convolutional layers. To verify the effectiveness of the proposed models, two typical DIPT methods, including particle image velocimetry (PIV) and Fourier phase correlation theory (FPCT) are introduced to build the benchmark models. The results show that the proposed models outperform the benchmark models under different scenarios.","PeriodicalId":115239,"journal":{"name":"2020 IEEE Industry Applications Society Annual Meeting","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Convolutional Auto-encoder Based Sky Image Prediction Model for Minutely Solar PV Power Forecasting\",\"authors\":\"Hua Chai, Z. Zhen, Kangping Li, Fei Wang, P. Dehghanian, M. Shafie‐khah, J. Catalão\",\"doi\":\"10.1109/IAS44978.2020.9334923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The precise minute time scale forecasting of an individual Photovoltaic power station output relies on accurate sky image prediction. To avoid the two deficiencies of traditional digital image processing technology (DIPT) in predicting sky images: relatively limited input spatiotemporal information and linear extrapolation of images, convolutional auto-encoder (CAE) based sky image prediction models are proposed according to the spatiotemporal feature extraction ability of 2D and 3D convolutional layers. To verify the effectiveness of the proposed models, two typical DIPT methods, including particle image velocimetry (PIV) and Fourier phase correlation theory (FPCT) are introduced to build the benchmark models. The results show that the proposed models outperform the benchmark models under different scenarios.\",\"PeriodicalId\":115239,\"journal\":{\"name\":\"2020 IEEE Industry Applications Society Annual Meeting\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Industry Applications Society Annual Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAS44978.2020.9334923\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS44978.2020.9334923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

单个光伏电站输出的精确时标预测依赖于准确的天象预测。针对传统数字图像处理技术(DIPT)在预测天空图像时输入时空信息相对有限和图像线性外推的两大不足,根据二维和三维卷积层的时空特征提取能力,提出了基于卷积自编码器(CAE)的天空图像预测模型。为了验证所提模型的有效性,引入粒子图像测速(PIV)和傅立叶相位相关理论(FPCT)两种典型的DIPT方法建立了基准模型。结果表明,所提模型在不同场景下均优于基准模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolutional Auto-encoder Based Sky Image Prediction Model for Minutely Solar PV Power Forecasting
The precise minute time scale forecasting of an individual Photovoltaic power station output relies on accurate sky image prediction. To avoid the two deficiencies of traditional digital image processing technology (DIPT) in predicting sky images: relatively limited input spatiotemporal information and linear extrapolation of images, convolutional auto-encoder (CAE) based sky image prediction models are proposed according to the spatiotemporal feature extraction ability of 2D and 3D convolutional layers. To verify the effectiveness of the proposed models, two typical DIPT methods, including particle image velocimetry (PIV) and Fourier phase correlation theory (FPCT) are introduced to build the benchmark models. The results show that the proposed models outperform the benchmark models under different scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信