{"title":"求解计算量大的优化问题的并行代理辅助多目标进化算法","authors":"Anna Syberfeldt, Henrik Grimm, A. Ng, R. John","doi":"10.1109/CEC.2008.4631228","DOIUrl":null,"url":null,"abstract":"This paper presents a new efficient multi-objective evolutionary algorithm for solving computationally-intensive optimization problems. To support a high degree of parallelism, the algorithm is based on a steady-state design. For improved efficiency the algorithm utilizes a surrogate to identify promising candidate solutions and filter out poor ones. To handle the uncertainties associated with the approximative surrogate evaluations, a new method for multi-objective optimization is described which is generally applicable to all surrogate techniques. In this method, basically, surrogate objective values assigned to offspring are adjusted to consider the error of the surrogate. The algorithm is evaluated on the ZDT benchmark functions and on a real-world problem of manufacturing optimization. In assessing the performance of the algorithm, a new performance metric is suggested that combines convergence and diversity into one single measure. Results from both the benchmark experiments and the real-world test case indicate the potential of the proposed algorithm.","PeriodicalId":328803,"journal":{"name":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"A parallel surrogate-assisted multi-objective evolutionary algorithm for computationally expensive optimization problems\",\"authors\":\"Anna Syberfeldt, Henrik Grimm, A. Ng, R. John\",\"doi\":\"10.1109/CEC.2008.4631228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new efficient multi-objective evolutionary algorithm for solving computationally-intensive optimization problems. To support a high degree of parallelism, the algorithm is based on a steady-state design. For improved efficiency the algorithm utilizes a surrogate to identify promising candidate solutions and filter out poor ones. To handle the uncertainties associated with the approximative surrogate evaluations, a new method for multi-objective optimization is described which is generally applicable to all surrogate techniques. In this method, basically, surrogate objective values assigned to offspring are adjusted to consider the error of the surrogate. The algorithm is evaluated on the ZDT benchmark functions and on a real-world problem of manufacturing optimization. In assessing the performance of the algorithm, a new performance metric is suggested that combines convergence and diversity into one single measure. Results from both the benchmark experiments and the real-world test case indicate the potential of the proposed algorithm.\",\"PeriodicalId\":328803,\"journal\":{\"name\":\"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2008.4631228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2008.4631228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A parallel surrogate-assisted multi-objective evolutionary algorithm for computationally expensive optimization problems
This paper presents a new efficient multi-objective evolutionary algorithm for solving computationally-intensive optimization problems. To support a high degree of parallelism, the algorithm is based on a steady-state design. For improved efficiency the algorithm utilizes a surrogate to identify promising candidate solutions and filter out poor ones. To handle the uncertainties associated with the approximative surrogate evaluations, a new method for multi-objective optimization is described which is generally applicable to all surrogate techniques. In this method, basically, surrogate objective values assigned to offspring are adjusted to consider the error of the surrogate. The algorithm is evaluated on the ZDT benchmark functions and on a real-world problem of manufacturing optimization. In assessing the performance of the algorithm, a new performance metric is suggested that combines convergence and diversity into one single measure. Results from both the benchmark experiments and the real-world test case indicate the potential of the proposed algorithm.