基于人脸特征区域划分的网格简化

An-Bing Wang, Bin Yu, Zhi-Jing Liu
{"title":"基于人脸特征区域划分的网格简化","authors":"An-Bing Wang, Bin Yu, Zhi-Jing Liu","doi":"10.1109/IASP.2009.5054636","DOIUrl":null,"url":null,"abstract":"This paper proposes a mesh simplification method based on facial features region partition for the special three-dimensional facial mesh model. According to distribution of feature points, the face is divided into several parts consisting of critical feature regional and non-critical feature regional. This method adjusts different areas using different curvature values. This algorithm also uses edge collapse method to reduce the density of meshes. As curvature is useful to enhance the shape description, the high details of key feature area are kept while other areas are simplified.","PeriodicalId":143959,"journal":{"name":"2009 International Conference on Image Analysis and Signal Processing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mesh simplification based on facial features region partition\",\"authors\":\"An-Bing Wang, Bin Yu, Zhi-Jing Liu\",\"doi\":\"10.1109/IASP.2009.5054636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a mesh simplification method based on facial features region partition for the special three-dimensional facial mesh model. According to distribution of feature points, the face is divided into several parts consisting of critical feature regional and non-critical feature regional. This method adjusts different areas using different curvature values. This algorithm also uses edge collapse method to reduce the density of meshes. As curvature is useful to enhance the shape description, the high details of key feature area are kept while other areas are simplified.\",\"PeriodicalId\":143959,\"journal\":{\"name\":\"2009 International Conference on Image Analysis and Signal Processing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Image Analysis and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IASP.2009.5054636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Image Analysis and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IASP.2009.5054636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对特殊的三维人脸网格模型,提出了一种基于人脸特征区域划分的网格化简方法。根据特征点的分布,将人脸分为关键特征区域和非关键特征区域。该方法使用不同的曲率值来调整不同的区域。该算法还采用边缘折叠方法来降低网格密度。由于曲率有助于增强形状描述,因此保留了关键特征区域的高细节,而简化了其他区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mesh simplification based on facial features region partition
This paper proposes a mesh simplification method based on facial features region partition for the special three-dimensional facial mesh model. According to distribution of feature points, the face is divided into several parts consisting of critical feature regional and non-critical feature regional. This method adjusts different areas using different curvature values. This algorithm also uses edge collapse method to reduce the density of meshes. As curvature is useful to enhance the shape description, the high details of key feature area are kept while other areas are simplified.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信