一类核速降非齐次奇摄动积分微分方程的正则化算法

A. Bobodzhanov
{"title":"一类核速降非齐次奇摄动积分微分方程的正则化算法","authors":"A. Bobodzhanov","doi":"10.17516/1997-1397-2022-15-2-214-223","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a singularly perturbed integro-differential equation with a rapidly oscillating right-hand side, which includes an integral operator with a rapidly varying kernel. The main goal of this work is to generalize the Lomov’s regularization method and to reveal the influence of the rapidly oscillating right-hand side and a rapidly varying kernel on the asymptotics of the solution to the original problem","PeriodicalId":438860,"journal":{"name":"Journal of Siberian Federal University. Mathematics & Physics","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Algorithm of the Regularization Method for a Singularly Perturbed Integro-differential Equation with a Rapidly Decreasing Kernel and Rapidly Oscillating Inhomogeneity\",\"authors\":\"A. Bobodzhanov\",\"doi\":\"10.17516/1997-1397-2022-15-2-214-223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a singularly perturbed integro-differential equation with a rapidly oscillating right-hand side, which includes an integral operator with a rapidly varying kernel. The main goal of this work is to generalize the Lomov’s regularization method and to reveal the influence of the rapidly oscillating right-hand side and a rapidly varying kernel on the asymptotics of the solution to the original problem\",\"PeriodicalId\":438860,\"journal\":{\"name\":\"Journal of Siberian Federal University. Mathematics & Physics\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Siberian Federal University. Mathematics & Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17516/1997-1397-2022-15-2-214-223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Siberian Federal University. Mathematics & Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17516/1997-1397-2022-15-2-214-223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了一类奇异摄动积分-微分方程,该方程具有快速振荡的右手边,其中包含一个具有快速变化核的积分算子。本工作的主要目的是推广Lomov正则化方法,并揭示快速振荡的右手边和快速变化的核对原问题解的渐近性的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithm of the Regularization Method for a Singularly Perturbed Integro-differential Equation with a Rapidly Decreasing Kernel and Rapidly Oscillating Inhomogeneity
In this paper, we consider a singularly perturbed integro-differential equation with a rapidly oscillating right-hand side, which includes an integral operator with a rapidly varying kernel. The main goal of this work is to generalize the Lomov’s regularization method and to reveal the influence of the rapidly oscillating right-hand side and a rapidly varying kernel on the asymptotics of the solution to the original problem
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信