Phong镶嵌的直接光线追踪

Shinji Ogaki
{"title":"Phong镶嵌的直接光线追踪","authors":"Shinji Ogaki","doi":"10.1145/1899950.1899969","DOIUrl":null,"url":null,"abstract":"There are two major ways of calculating ray and parametric surface intersections in rendering. The first is through the use of micropolygons, and the second is to use parametric surfaces such as NURBS surface together with numerical methods such as Newton Raphson. Both methods are computationally expensive and complicated to implement. In this paper, we introduce a direct ray tracing method for Phong Tessellation. Our method gives analytic solutions that can be readily derived by hand and enables rendering smooth surfaces in a computationally inexpensive yet robust way.","PeriodicalId":354911,"journal":{"name":"ACM SIGGRAPH ASIA 2010 Sketches","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Direct ray tracing of Phong Tessellation\",\"authors\":\"Shinji Ogaki\",\"doi\":\"10.1145/1899950.1899969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are two major ways of calculating ray and parametric surface intersections in rendering. The first is through the use of micropolygons, and the second is to use parametric surfaces such as NURBS surface together with numerical methods such as Newton Raphson. Both methods are computationally expensive and complicated to implement. In this paper, we introduce a direct ray tracing method for Phong Tessellation. Our method gives analytic solutions that can be readily derived by hand and enables rendering smooth surfaces in a computationally inexpensive yet robust way.\",\"PeriodicalId\":354911,\"journal\":{\"name\":\"ACM SIGGRAPH ASIA 2010 Sketches\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH ASIA 2010 Sketches\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1899950.1899969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH ASIA 2010 Sketches","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1899950.1899969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在绘制中有两种主要的计算射线和参数曲面相交的方法。一是通过微多边形的使用,二是将NURBS曲面等参数曲面与Newton Raphson等数值方法结合使用。这两种方法在计算上都很昂贵,实现起来也很复杂。本文介绍了一种用于Phong曲面镶嵌的直接光线追踪方法。我们的方法给出了解析解,可以很容易地手工推导,并且可以以一种计算廉价但鲁棒的方式绘制光滑的表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direct ray tracing of Phong Tessellation
There are two major ways of calculating ray and parametric surface intersections in rendering. The first is through the use of micropolygons, and the second is to use parametric surfaces such as NURBS surface together with numerical methods such as Newton Raphson. Both methods are computationally expensive and complicated to implement. In this paper, we introduce a direct ray tracing method for Phong Tessellation. Our method gives analytic solutions that can be readily derived by hand and enables rendering smooth surfaces in a computationally inexpensive yet robust way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信