考虑路径延迟的fpga性能和可达性驱动路由器

Yuh-Sheng Lee, A. Wu
{"title":"考虑路径延迟的fpga性能和可达性驱动路由器","authors":"Yuh-Sheng Lee, A. Wu","doi":"10.1145/217474.217588","DOIUrl":null,"url":null,"abstract":"This paper presents a new performance and routability driven router for symmetrical array based Field Programmable Gate Arrays (FPGAs). The objectives of our proposed routing algorithm are twofold: (1) improve the routability of the design (i.e., minimize the maximumrequired routing channel density) and (2) improve the overall performance of the design (i.e., minimize the overall path delay). Initially, nets are routed sequentially according to their criticalities and routabilities. The nets/paths violating the routing-resource and timing constraints are then resolved iteratively by a rip-up-and-rerouter, which is guided by a simulated evolution based optimization technique. The proposed algorithm considers the path delays and routability throughout the entire routing process. Experimental results show that our router can significantly improve routability and reduce delay over many existing routing algorithms.","PeriodicalId":422297,"journal":{"name":"32nd Design Automation Conference","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":"{\"title\":\"A Performance and Routability Driven Router for FPGAs Considering Path Delays\",\"authors\":\"Yuh-Sheng Lee, A. Wu\",\"doi\":\"10.1145/217474.217588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new performance and routability driven router for symmetrical array based Field Programmable Gate Arrays (FPGAs). The objectives of our proposed routing algorithm are twofold: (1) improve the routability of the design (i.e., minimize the maximumrequired routing channel density) and (2) improve the overall performance of the design (i.e., minimize the overall path delay). Initially, nets are routed sequentially according to their criticalities and routabilities. The nets/paths violating the routing-resource and timing constraints are then resolved iteratively by a rip-up-and-rerouter, which is guided by a simulated evolution based optimization technique. The proposed algorithm considers the path delays and routability throughout the entire routing process. Experimental results show that our router can significantly improve routability and reduce delay over many existing routing algorithms.\",\"PeriodicalId\":422297,\"journal\":{\"name\":\"32nd Design Automation Conference\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"67\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"32nd Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/217474.217588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"32nd Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/217474.217588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

摘要

本文提出了一种新的基于对称阵列的现场可编程门阵列(fpga)的性能和可路由性驱动路由器。我们提出的路由算法的目标是双重的:(1)提高设计的可达性(即,最小化所需的最大路由通道密度)和(2)提高设计的整体性能(即,最小化总体路径延迟)。最初,根据网络的临界性和可达性顺序路由。在基于模拟进化的优化技术的指导下,对违反路由资源和时间约束的网络/路径进行迭代求解。该算法在整个路由过程中考虑了路径延迟和路由可达性。实验结果表明,与许多现有的路由算法相比,我们的路由器可以显著提高路由可达性并降低延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Performance and Routability Driven Router for FPGAs Considering Path Delays
This paper presents a new performance and routability driven router for symmetrical array based Field Programmable Gate Arrays (FPGAs). The objectives of our proposed routing algorithm are twofold: (1) improve the routability of the design (i.e., minimize the maximumrequired routing channel density) and (2) improve the overall performance of the design (i.e., minimize the overall path delay). Initially, nets are routed sequentially according to their criticalities and routabilities. The nets/paths violating the routing-resource and timing constraints are then resolved iteratively by a rip-up-and-rerouter, which is guided by a simulated evolution based optimization technique. The proposed algorithm considers the path delays and routability throughout the entire routing process. Experimental results show that our router can significantly improve routability and reduce delay over many existing routing algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信