渡轮航道的海上异常探测

Cemre Zor, J. Kittler
{"title":"渡轮航道的海上异常探测","authors":"Cemre Zor, J. Kittler","doi":"10.1109/ICASSP.2017.7952636","DOIUrl":null,"url":null,"abstract":"This paper proposes a methodology for the automatic detection of anomalous shipping tracks traced by ferries. The approach comprises a set of models as a basis for outlier detection: A Gaussian process (GP) model regresses displacement information collected over time, and a Markov chain based detector makes use of the direction (heading) information. GP regression is performed together with Median Absolute Deviation to account for contaminated training data. The methodology utilizes the coordinates of a given ferry recorded on a second by second basis via Automatic Identification System. Its effectiveness is demonstrated on a dataset collected in the Solent area.","PeriodicalId":118243,"journal":{"name":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Maritime anomaly detection in ferry tracks\",\"authors\":\"Cemre Zor, J. Kittler\",\"doi\":\"10.1109/ICASSP.2017.7952636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a methodology for the automatic detection of anomalous shipping tracks traced by ferries. The approach comprises a set of models as a basis for outlier detection: A Gaussian process (GP) model regresses displacement information collected over time, and a Markov chain based detector makes use of the direction (heading) information. GP regression is performed together with Median Absolute Deviation to account for contaminated training data. The methodology utilizes the coordinates of a given ferry recorded on a second by second basis via Automatic Identification System. Its effectiveness is demonstrated on a dataset collected in the Solent area.\",\"PeriodicalId\":118243,\"journal\":{\"name\":\"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2017.7952636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2017.7952636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种自动检测渡轮异常航迹的方法。该方法包括一组模型作为离群值检测的基础:高斯过程(GP)模型回归随时间收集的位移信息,基于马尔可夫链的检测器利用方向(航向)信息。GP回归与中位数绝对偏差一起执行,以解释受污染的训练数据。该方法利用通过自动识别系统以秒为单位记录的给定渡轮的坐标。在索伦特地区的数据集上验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maritime anomaly detection in ferry tracks
This paper proposes a methodology for the automatic detection of anomalous shipping tracks traced by ferries. The approach comprises a set of models as a basis for outlier detection: A Gaussian process (GP) model regresses displacement information collected over time, and a Markov chain based detector makes use of the direction (heading) information. GP regression is performed together with Median Absolute Deviation to account for contaminated training data. The methodology utilizes the coordinates of a given ferry recorded on a second by second basis via Automatic Identification System. Its effectiveness is demonstrated on a dataset collected in the Solent area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信