减少数值离散的深度神经网络用于地震模拟结果的后处理

K. Gadylshina, V. Lisitsa, D. Vishnevsky, K. Gadylshin
{"title":"减少数值离散的深度神经网络用于地震模拟结果的后处理","authors":"K. Gadylshina, V. Lisitsa, D. Vishnevsky, K. Gadylshin","doi":"10.18303/2619-1563-2022-1-99","DOIUrl":null,"url":null,"abstract":"The article describes a new approach to seismic modeling that combines calculations using traditional finite difference methods with the deep learning tools. Seismograms for the training data set are calculated using a finite difference scheme with high-quality spatial and temporal discretization. A numerical dispersion mitigation neural network is trained on the training dataset and applied to inaccurate seismograms calculated on a raw grid with a large spatial spacing. The paper presents a demonstration of this approach for 2D model; it is showing a tenfold acceleration of seismic modeling.","PeriodicalId":190530,"journal":{"name":"Russian Journal of Geophysical Technologies","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep neural network reducing numerical dispersion for post-processing of seismic modeling results\",\"authors\":\"K. Gadylshina, V. Lisitsa, D. Vishnevsky, K. Gadylshin\",\"doi\":\"10.18303/2619-1563-2022-1-99\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article describes a new approach to seismic modeling that combines calculations using traditional finite difference methods with the deep learning tools. Seismograms for the training data set are calculated using a finite difference scheme with high-quality spatial and temporal discretization. A numerical dispersion mitigation neural network is trained on the training dataset and applied to inaccurate seismograms calculated on a raw grid with a large spatial spacing. The paper presents a demonstration of this approach for 2D model; it is showing a tenfold acceleration of seismic modeling.\",\"PeriodicalId\":190530,\"journal\":{\"name\":\"Russian Journal of Geophysical Technologies\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Journal of Geophysical Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18303/2619-1563-2022-1-99\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Geophysical Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18303/2619-1563-2022-1-99","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种新的地震建模方法,该方法将传统的有限差分方法与深度学习工具相结合。训练数据集的地震图采用具有高质量时空离散化的有限差分格式计算。在训练数据集上训练了一个数值色散缓解神经网络,并将其应用于在大空间间隔的原始网格上计算的不准确地震记录。本文给出了该方法在二维模型上的演示;它显示了地震模拟的十倍加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep neural network reducing numerical dispersion for post-processing of seismic modeling results
The article describes a new approach to seismic modeling that combines calculations using traditional finite difference methods with the deep learning tools. Seismograms for the training data set are calculated using a finite difference scheme with high-quality spatial and temporal discretization. A numerical dispersion mitigation neural network is trained on the training dataset and applied to inaccurate seismograms calculated on a raw grid with a large spatial spacing. The paper presents a demonstration of this approach for 2D model; it is showing a tenfold acceleration of seismic modeling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信