SPGNet:基于空间投影的低维空间三维人体姿态估计

Zihan Wang, Ruimin Chen, Mengxuan Liu, Guanfang Dong, Anup Basu
{"title":"SPGNet:基于空间投影的低维空间三维人体姿态估计","authors":"Zihan Wang, Ruimin Chen, Mengxuan Liu, Guanfang Dong, Anup Basu","doi":"10.48550/arXiv.2206.01867","DOIUrl":null,"url":null,"abstract":"We propose a method SPGNet for 3D human pose estimation that mixes multi-dimensional re-projection into supervised learning. In this method, the 2D-to-3D-lifting network predicts the global position and coordinates of the 3D human pose. Then, we re-project the estimated 3D pose back to the 2D key points along with spatial adjustments. The loss functions compare the estimated 3D pose with the 3D pose ground truth, and re-projected 2D pose with the input 2D pose. In addition, we propose a kinematic constraint to restrict the predicted target with constant human bone length. Based on the estimation results for the dataset Human3.6M, our approach outperforms many state-of-the-art methods both qualitatively and quantitatively.","PeriodicalId":211605,"journal":{"name":"International Conference on Smart Multimedia","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SPGNet: Spatial Projection Guided 3D Human Pose Estimation in Low Dimensional Space\",\"authors\":\"Zihan Wang, Ruimin Chen, Mengxuan Liu, Guanfang Dong, Anup Basu\",\"doi\":\"10.48550/arXiv.2206.01867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a method SPGNet for 3D human pose estimation that mixes multi-dimensional re-projection into supervised learning. In this method, the 2D-to-3D-lifting network predicts the global position and coordinates of the 3D human pose. Then, we re-project the estimated 3D pose back to the 2D key points along with spatial adjustments. The loss functions compare the estimated 3D pose with the 3D pose ground truth, and re-projected 2D pose with the input 2D pose. In addition, we propose a kinematic constraint to restrict the predicted target with constant human bone length. Based on the estimation results for the dataset Human3.6M, our approach outperforms many state-of-the-art methods both qualitatively and quantitatively.\",\"PeriodicalId\":211605,\"journal\":{\"name\":\"International Conference on Smart Multimedia\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Smart Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2206.01867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Smart Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2206.01867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种将多维重投影与监督学习相结合的三维人体姿态估计方法SPGNet。在该方法中,2d -to-3D提升网络预测三维人体姿态的全局位置和坐标。然后,我们将估计的3D姿态连同空间调整一起重新投影回2D关键点。损失函数将估计的三维姿态与三维姿态地面真值进行比较,并将重新投影的二维姿态与输入的二维姿态进行比较。此外,我们提出了一个运动学约束,以限制预测目标恒定的人骨长度。基于对Human3.6M数据集的估计结果,我们的方法在定性和定量上都优于许多最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SPGNet: Spatial Projection Guided 3D Human Pose Estimation in Low Dimensional Space
We propose a method SPGNet for 3D human pose estimation that mixes multi-dimensional re-projection into supervised learning. In this method, the 2D-to-3D-lifting network predicts the global position and coordinates of the 3D human pose. Then, we re-project the estimated 3D pose back to the 2D key points along with spatial adjustments. The loss functions compare the estimated 3D pose with the 3D pose ground truth, and re-projected 2D pose with the input 2D pose. In addition, we propose a kinematic constraint to restrict the predicted target with constant human bone length. Based on the estimation results for the dataset Human3.6M, our approach outperforms many state-of-the-art methods both qualitatively and quantitatively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信