关节构型变化对机器人有效质量的影响

Abdel-Nasser Sharkawy
{"title":"关节构型变化对机器人有效质量的影响","authors":"Abdel-Nasser Sharkawy","doi":"10.31763/ijrcs.v2i1.564","DOIUrl":null,"url":null,"abstract":"Effective mass of robot is considered of great significance in enhancing the safety of human-robot collaboration. In this paper, the effective mass of the robot is investigated using different joint configurations. This investigation is executed in two steps. In the first step, the position of each joint of the robot is changing alone, whereas the positions of the other joints of the robot are fixed and then the effective mass is determined. In the second step, the positions of all joints of the robot are changing together, and the effective mass of the robot is determined. From this process, the relation between the effective mass of the robot and the joint configurations can be presented. This analysis is implemented in MATLAB and using two collaborative robots; the first one is UR10e robot which is a 6-DOF robot and the second one is KUKA LBR iiwa 7 R800 robot which is a 7-DOF robot. The results from this simulation prove that the change in any joint position of the robot except the first and the last joint affect the effective mass of the robot. In addition, the change in all joints’ positions of the robot affect the effective mass. Effective mass can thus be considered as one of the criteria in optimizing the robot kinematics and configuration.","PeriodicalId":409364,"journal":{"name":"International Journal of Robotics and Control Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of Joints’ Configuration Change on the Effective Mass of the Robot\",\"authors\":\"Abdel-Nasser Sharkawy\",\"doi\":\"10.31763/ijrcs.v2i1.564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Effective mass of robot is considered of great significance in enhancing the safety of human-robot collaboration. In this paper, the effective mass of the robot is investigated using different joint configurations. This investigation is executed in two steps. In the first step, the position of each joint of the robot is changing alone, whereas the positions of the other joints of the robot are fixed and then the effective mass is determined. In the second step, the positions of all joints of the robot are changing together, and the effective mass of the robot is determined. From this process, the relation between the effective mass of the robot and the joint configurations can be presented. This analysis is implemented in MATLAB and using two collaborative robots; the first one is UR10e robot which is a 6-DOF robot and the second one is KUKA LBR iiwa 7 R800 robot which is a 7-DOF robot. The results from this simulation prove that the change in any joint position of the robot except the first and the last joint affect the effective mass of the robot. In addition, the change in all joints’ positions of the robot affect the effective mass. Effective mass can thus be considered as one of the criteria in optimizing the robot kinematics and configuration.\",\"PeriodicalId\":409364,\"journal\":{\"name\":\"International Journal of Robotics and Control Systems\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Robotics and Control Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31763/ijrcs.v2i1.564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Robotics and Control Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31763/ijrcs.v2i1.564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

机器人的有效质量对于提高人机协作的安全性具有重要意义。本文研究了不同关节构型下机器人的有效质量。这项调查分两个步骤执行。在第一步中,机器人的每个关节的位置是单独变化的,而机器人的其他关节的位置是固定的,然后确定有效质量。第二步,机器人所有关节的位置一起变化,确定机器人的有效质量。由此可以得到机器人的有效质量与关节构型之间的关系。该分析是在MATLAB中使用两个协作机器人实现的;第一个是UR10e机器人,它是一个六自由度机器人,第二个是KUKA LBR iiwa 7r800机器人,它是一个七自由度机器人。仿真结果表明,除了第一个和最后一个关节外,机器人任何关节位置的变化都会影响机器人的有效质量。此外,机器人各关节位置的变化会影响有效质量。因此,有效质量可以作为优化机器人运动学和构型的标准之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Joints’ Configuration Change on the Effective Mass of the Robot
Effective mass of robot is considered of great significance in enhancing the safety of human-robot collaboration. In this paper, the effective mass of the robot is investigated using different joint configurations. This investigation is executed in two steps. In the first step, the position of each joint of the robot is changing alone, whereas the positions of the other joints of the robot are fixed and then the effective mass is determined. In the second step, the positions of all joints of the robot are changing together, and the effective mass of the robot is determined. From this process, the relation between the effective mass of the robot and the joint configurations can be presented. This analysis is implemented in MATLAB and using two collaborative robots; the first one is UR10e robot which is a 6-DOF robot and the second one is KUKA LBR iiwa 7 R800 robot which is a 7-DOF robot. The results from this simulation prove that the change in any joint position of the robot except the first and the last joint affect the effective mass of the robot. In addition, the change in all joints’ positions of the robot affect the effective mass. Effective mass can thus be considered as one of the criteria in optimizing the robot kinematics and configuration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信