GPU上的计算树宽度

Tom C. van der Zanden, H. Bodlaender
{"title":"GPU上的计算树宽度","authors":"Tom C. van der Zanden, H. Bodlaender","doi":"10.4230/LIPIcs.IPEC.2017.29","DOIUrl":null,"url":null,"abstract":"We present a parallel algorithm for computing the treewidth of a graph on a GPU. We implement this algorithm in OpenCL, and experimentally evaluate its performance. Our algorithm is based on an O*(2^n)-time algorithm that explores the elimination orderings of the graph using a Held-Karp like dynamic programming approach. We use Bloom filters to detect duplicate solutions. \n \nGPU programming presents unique challenges and constraints, such as constraints on the use of memory and the need to limit branch divergence. We experiment with various optimizations to see if it is possible to work around these issues. We achieve a very large speed up (up to 77x) compared to running the same algorithm on the CPU.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Computing Treewidth on the GPU\",\"authors\":\"Tom C. van der Zanden, H. Bodlaender\",\"doi\":\"10.4230/LIPIcs.IPEC.2017.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a parallel algorithm for computing the treewidth of a graph on a GPU. We implement this algorithm in OpenCL, and experimentally evaluate its performance. Our algorithm is based on an O*(2^n)-time algorithm that explores the elimination orderings of the graph using a Held-Karp like dynamic programming approach. We use Bloom filters to detect duplicate solutions. \\n \\nGPU programming presents unique challenges and constraints, such as constraints on the use of memory and the need to limit branch divergence. We experiment with various optimizations to see if it is possible to work around these issues. We achieve a very large speed up (up to 77x) compared to running the same algorithm on the CPU.\",\"PeriodicalId\":137775,\"journal\":{\"name\":\"International Symposium on Parameterized and Exact Computation\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Parameterized and Exact Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.IPEC.2017.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2017.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种在GPU上计算图树宽度的并行算法。我们在OpenCL中实现了该算法,并对其性能进行了实验评估。我们的算法基于O*(2^n)时间算法,该算法使用类似于Held-Karp的动态规划方法来探索图的消去顺序。我们使用Bloom过滤器来检测重复的溶液。GPU编程提出了独特的挑战和限制,例如对内存使用的限制和限制分支发散的需要。我们尝试了各种优化,看看是否有可能解决这些问题。与在CPU上运行相同的算法相比,我们实现了非常大的速度提升(高达77倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing Treewidth on the GPU
We present a parallel algorithm for computing the treewidth of a graph on a GPU. We implement this algorithm in OpenCL, and experimentally evaluate its performance. Our algorithm is based on an O*(2^n)-time algorithm that explores the elimination orderings of the graph using a Held-Karp like dynamic programming approach. We use Bloom filters to detect duplicate solutions. GPU programming presents unique challenges and constraints, such as constraints on the use of memory and the need to limit branch divergence. We experiment with various optimizations to see if it is possible to work around these issues. We achieve a very large speed up (up to 77x) compared to running the same algorithm on the CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信