基于图像特征信息的视频QoE评估方法

Wenjing Li, Qian Luo, Peng Yu, Xue-song Qiu
{"title":"基于图像特征信息的视频QoE评估方法","authors":"Wenjing Li, Qian Luo, Peng Yu, Xue-song Qiu","doi":"10.1109/APNOMS.2015.7275399","DOIUrl":null,"url":null,"abstract":"This paper discusses how to assess video Quality of Experience (QoE) with image feature information which includes texture and saliency information. In order to compress and transmit the feature information, wavelet transform is conducted and the high-frequency component histograms are fitted using generalized Gaussian distribution. At end user side, the video distortion is measured by using Kullback-Leibler Divergence (KLD) and therefore MOS is evaluated using neural network fitting. The LIVE Video Quality Database is used for testing the performance of proposed method. result confirms that the proposed method is competitive and suitable for assessing the QoE of real-time video service.","PeriodicalId":269263,"journal":{"name":"2015 17th Asia-Pacific Network Operations and Management Symposium (APNOMS)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Reduced-reference video QoE assessment method based on image feature information\",\"authors\":\"Wenjing Li, Qian Luo, Peng Yu, Xue-song Qiu\",\"doi\":\"10.1109/APNOMS.2015.7275399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses how to assess video Quality of Experience (QoE) with image feature information which includes texture and saliency information. In order to compress and transmit the feature information, wavelet transform is conducted and the high-frequency component histograms are fitted using generalized Gaussian distribution. At end user side, the video distortion is measured by using Kullback-Leibler Divergence (KLD) and therefore MOS is evaluated using neural network fitting. The LIVE Video Quality Database is used for testing the performance of proposed method. result confirms that the proposed method is competitive and suitable for assessing the QoE of real-time video service.\",\"PeriodicalId\":269263,\"journal\":{\"name\":\"2015 17th Asia-Pacific Network Operations and Management Symposium (APNOMS)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 17th Asia-Pacific Network Operations and Management Symposium (APNOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APNOMS.2015.7275399\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 17th Asia-Pacific Network Operations and Management Symposium (APNOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APNOMS.2015.7275399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文讨论了如何利用图像特征信息(包括纹理信息和显著性信息)来评估视频体验质量。为了压缩和传输特征信息,进行小波变换,并采用广义高斯分布拟合高频分量直方图。在终端用户端,使用Kullback-Leibler散度(KLD)测量视频失真,因此使用神经网络拟合评估MOS。利用实时视频质量数据库对所提方法的性能进行了测试。结果表明,该方法具有一定的竞争力,适用于实时视频业务的QoE评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced-reference video QoE assessment method based on image feature information
This paper discusses how to assess video Quality of Experience (QoE) with image feature information which includes texture and saliency information. In order to compress and transmit the feature information, wavelet transform is conducted and the high-frequency component histograms are fitted using generalized Gaussian distribution. At end user side, the video distortion is measured by using Kullback-Leibler Divergence (KLD) and therefore MOS is evaluated using neural network fitting. The LIVE Video Quality Database is used for testing the performance of proposed method. result confirms that the proposed method is competitive and suitable for assessing the QoE of real-time video service.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信