组合问题的启发式困难实例的进化

B. Julstrom
{"title":"组合问题的启发式困难实例的进化","authors":"B. Julstrom","doi":"10.1145/1569901.1569941","DOIUrl":null,"url":null,"abstract":"When evaluating a heuristic for a combinatorial problem, randomly generated instances of the problem may not provide a thorough exploration of the heuristic's performance, and it may not be obvious what kinds of instances challenge or confound the heuristic. An evolutionary algorithm can search a space of problem instances for cases that are heuristically difficult. Evaluation in such an EA requires an exact algorithm for the problem, which limits the sizes of the instances that can be explored, but the EA's (small) results can reveal misleading patterns or structures that can be replicated in larger instances. As an example, a genetic algorithm searches for instances of the quadratic knapsack problem that are difficult for a straightforward greedy heuristic. The GA identifies such instances, which in turn reveal patterns that mislead the heuristic.","PeriodicalId":193093,"journal":{"name":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Evolving heuristically difficult instances of combinatorial problems\",\"authors\":\"B. Julstrom\",\"doi\":\"10.1145/1569901.1569941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When evaluating a heuristic for a combinatorial problem, randomly generated instances of the problem may not provide a thorough exploration of the heuristic's performance, and it may not be obvious what kinds of instances challenge or confound the heuristic. An evolutionary algorithm can search a space of problem instances for cases that are heuristically difficult. Evaluation in such an EA requires an exact algorithm for the problem, which limits the sizes of the instances that can be explored, but the EA's (small) results can reveal misleading patterns or structures that can be replicated in larger instances. As an example, a genetic algorithm searches for instances of the quadratic knapsack problem that are difficult for a straightforward greedy heuristic. The GA identifies such instances, which in turn reveal patterns that mislead the heuristic.\",\"PeriodicalId\":193093,\"journal\":{\"name\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th Annual conference on Genetic and evolutionary computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1569901.1569941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th Annual conference on Genetic and evolutionary computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1569901.1569941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在评估用于组合问题的启发式方法时,随机生成的问题实例可能无法提供对启发式方法性能的全面探索,并且可能不清楚哪些类型的实例挑战或混淆了启发式方法。进化算法可以在问题实例的空间中搜索启发式困难的情况。在这样的EA中进行评估需要针对问题的精确算法,这限制了可以探索的实例的大小,但是EA的(小的)结果可以揭示可以在更大的实例中复制的误导性模式或结构。作为一个例子,遗传算法搜索二次型背包问题的实例,这对于直接的贪婪启发式算法来说是困难的。遗传算法识别这样的实例,而这些实例又揭示了误导启发式算法的模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evolving heuristically difficult instances of combinatorial problems
When evaluating a heuristic for a combinatorial problem, randomly generated instances of the problem may not provide a thorough exploration of the heuristic's performance, and it may not be obvious what kinds of instances challenge or confound the heuristic. An evolutionary algorithm can search a space of problem instances for cases that are heuristically difficult. Evaluation in such an EA requires an exact algorithm for the problem, which limits the sizes of the instances that can be explored, but the EA's (small) results can reveal misleading patterns or structures that can be replicated in larger instances. As an example, a genetic algorithm searches for instances of the quadratic knapsack problem that are difficult for a straightforward greedy heuristic. The GA identifies such instances, which in turn reveal patterns that mislead the heuristic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信