时空数据挖掘程序:激光雷达

Xiaofeng Wang, Jiayang Sun, K. Bogie
{"title":"时空数据挖掘程序:激光雷达","authors":"Xiaofeng Wang, Jiayang Sun, K. Bogie","doi":"10.1214/074921706000000707","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the statistical development of our spatial-temporal data mining procedure, LASR (pronounced \"laser\"). LASR is the abbreviation for Longitudinal Analysis with Self-Registration of large- p-small-n data. It was motivated by a study of \"Neuromuscular Electrical Stimulation\" experiments, where the data are noisy and heterogeneous, might not align from one session to another, and involve a large number of mul- tiple comparisons. The three main components of LASR are: (1) data seg- mentation for separating heterogeneous data and for distinguishing outliers, (2) automatic approaches for spatial and temporal data registration, and (3) statistical smoothing mapping for identifying \"activated\" regions based on false-discovery-rate controlled p-maps and movies. Each of the components is of interest in its own right. As a statistical ensemble, the idea of LASR is applicable to other types of spatial-temporal data sets beyond those from the NMES experiments.","PeriodicalId":416422,"journal":{"name":"Ims Lecture Notes Monograph Series","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Spatial-temporal data mining procedure: LASR\",\"authors\":\"Xiaofeng Wang, Jiayang Sun, K. Bogie\",\"doi\":\"10.1214/074921706000000707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the statistical development of our spatial-temporal data mining procedure, LASR (pronounced \\\"laser\\\"). LASR is the abbreviation for Longitudinal Analysis with Self-Registration of large- p-small-n data. It was motivated by a study of \\\"Neuromuscular Electrical Stimulation\\\" experiments, where the data are noisy and heterogeneous, might not align from one session to another, and involve a large number of mul- tiple comparisons. The three main components of LASR are: (1) data seg- mentation for separating heterogeneous data and for distinguishing outliers, (2) automatic approaches for spatial and temporal data registration, and (3) statistical smoothing mapping for identifying \\\"activated\\\" regions based on false-discovery-rate controlled p-maps and movies. Each of the components is of interest in its own right. As a statistical ensemble, the idea of LASR is applicable to other types of spatial-temporal data sets beyond those from the NMES experiments.\",\"PeriodicalId\":416422,\"journal\":{\"name\":\"Ims Lecture Notes Monograph Series\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ims Lecture Notes Monograph Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/074921706000000707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ims Lecture Notes Monograph Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/074921706000000707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文关注的是我们的时空数据挖掘程序LASR(发音为“激光”)的统计发展。LASR是大- p-小-n数据自配准纵向分析的缩写。这项研究的动机是“神经肌肉电刺激”实验的研究,其中的数据是嘈杂的和异构的,可能从一个阶段到另一个阶段不一致,并且涉及大量的多重比较。LASR的三个主要组成部分是:(1)用于分离异构数据和区分异常值的数据分割,(2)用于空间和时间数据配准的自动方法,以及(3)用于识别基于错误发现率控制的p-map和电影的“激活”区域的统计平滑映射。每个组件都有自己的利益。作为一个统计集合,LASR的思想适用于NMES实验之外的其他类型的时空数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial-temporal data mining procedure: LASR
This paper is concerned with the statistical development of our spatial-temporal data mining procedure, LASR (pronounced "laser"). LASR is the abbreviation for Longitudinal Analysis with Self-Registration of large- p-small-n data. It was motivated by a study of "Neuromuscular Electrical Stimulation" experiments, where the data are noisy and heterogeneous, might not align from one session to another, and involve a large number of mul- tiple comparisons. The three main components of LASR are: (1) data seg- mentation for separating heterogeneous data and for distinguishing outliers, (2) automatic approaches for spatial and temporal data registration, and (3) statistical smoothing mapping for identifying "activated" regions based on false-discovery-rate controlled p-maps and movies. Each of the components is of interest in its own right. As a statistical ensemble, the idea of LASR is applicable to other types of spatial-temporal data sets beyond those from the NMES experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信