Nubia Rosa, Igor Luidji, Sérgio F Da Silva, Douglas Farias
{"title":"基于叶片纹理图像的植物物种识别策略研究","authors":"Nubia Rosa, Igor Luidji, Sérgio F Da Silva, Douglas Farias","doi":"10.52591/202107243","DOIUrl":null,"url":null,"abstract":"In our planet there are thousands of plant species, being important to catalog these to help in the biodiversity preservation. However, identifying various plant species is not an easy task, even for specialists. Methods of computer vision for identifying plant species are interesting solutions for these difficulties. This work aims to analyze the efficiency of texture feature extraction methods applied in the identification of plant species by means of images of its leaves. For this, different texture descriptors were applied in three different databases. The obtained results indicate that local phase quantization (LPQ)-based methods achieve great efficiency and robustness. Additionally, the combination of LPQ-based methods with a segmentation based fractal texture analysis (SFTA) has increased the correct classification rate in all databases.","PeriodicalId":196347,"journal":{"name":"LatinX in AI at International Conference on Machine Learning 2021","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiple strategy for plant species identification using images of leaf texture\",\"authors\":\"Nubia Rosa, Igor Luidji, Sérgio F Da Silva, Douglas Farias\",\"doi\":\"10.52591/202107243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our planet there are thousands of plant species, being important to catalog these to help in the biodiversity preservation. However, identifying various plant species is not an easy task, even for specialists. Methods of computer vision for identifying plant species are interesting solutions for these difficulties. This work aims to analyze the efficiency of texture feature extraction methods applied in the identification of plant species by means of images of its leaves. For this, different texture descriptors were applied in three different databases. The obtained results indicate that local phase quantization (LPQ)-based methods achieve great efficiency and robustness. Additionally, the combination of LPQ-based methods with a segmentation based fractal texture analysis (SFTA) has increased the correct classification rate in all databases.\",\"PeriodicalId\":196347,\"journal\":{\"name\":\"LatinX in AI at International Conference on Machine Learning 2021\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LatinX in AI at International Conference on Machine Learning 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52591/202107243\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LatinX in AI at International Conference on Machine Learning 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52591/202107243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A multiple strategy for plant species identification using images of leaf texture
In our planet there are thousands of plant species, being important to catalog these to help in the biodiversity preservation. However, identifying various plant species is not an easy task, even for specialists. Methods of computer vision for identifying plant species are interesting solutions for these difficulties. This work aims to analyze the efficiency of texture feature extraction methods applied in the identification of plant species by means of images of its leaves. For this, different texture descriptors were applied in three different databases. The obtained results indicate that local phase quantization (LPQ)-based methods achieve great efficiency and robustness. Additionally, the combination of LPQ-based methods with a segmentation based fractal texture analysis (SFTA) has increased the correct classification rate in all databases.