学习可控的3D关卡生成器

Zehua Jiang, Sam Earle, M. Green, J. Togelius
{"title":"学习可控的3D关卡生成器","authors":"Zehua Jiang, Sam Earle, M. Green, J. Togelius","doi":"10.1145/3555858.3563273","DOIUrl":null,"url":null,"abstract":"Procedural Content Generation via Reinforcement Learning (PCGRL) foregoes the need for large human-authored data-sets and allows agents to train explicitly on functional constraints, using computable, user-defined measures of quality instead of target output. We explore the application of PCGRL to 3D domains, in which content-generation tasks naturally have greater complexity and potential pertinence to real-world applications. Here, we introduce several PCGRL tasks for the 3D domain, Minecraft. These tasks will challenge RL-based generators using affordances often found in 3D environments, such as jumping, multiple dimensional movement, and gravity. We train agents to optimize each of these tasks to explore the capabilities of existing in PCGRL. The agents are able to generate relatively complex and diverse levels, and generalize to random initial states and control targets. Controllability tests in the presented tasks demonstrate their utility to analyze success and failure for 3D generators. We argue that these generators could serve both as co-creative tools for game designers, and as pre-trained environment generators in curriculum learning for player agents.","PeriodicalId":290159,"journal":{"name":"Proceedings of the 17th International Conference on the Foundations of Digital Games","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Learning Controllable 3D Level Generators\",\"authors\":\"Zehua Jiang, Sam Earle, M. Green, J. Togelius\",\"doi\":\"10.1145/3555858.3563273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Procedural Content Generation via Reinforcement Learning (PCGRL) foregoes the need for large human-authored data-sets and allows agents to train explicitly on functional constraints, using computable, user-defined measures of quality instead of target output. We explore the application of PCGRL to 3D domains, in which content-generation tasks naturally have greater complexity and potential pertinence to real-world applications. Here, we introduce several PCGRL tasks for the 3D domain, Minecraft. These tasks will challenge RL-based generators using affordances often found in 3D environments, such as jumping, multiple dimensional movement, and gravity. We train agents to optimize each of these tasks to explore the capabilities of existing in PCGRL. The agents are able to generate relatively complex and diverse levels, and generalize to random initial states and control targets. Controllability tests in the presented tasks demonstrate their utility to analyze success and failure for 3D generators. We argue that these generators could serve both as co-creative tools for game designers, and as pre-trained environment generators in curriculum learning for player agents.\",\"PeriodicalId\":290159,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on the Foundations of Digital Games\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on the Foundations of Digital Games\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555858.3563273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on the Foundations of Digital Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555858.3563273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

通过强化学习生成程序内容(PCGRL)放弃了对大型人工编写数据集的需求,并允许代理使用可计算的、用户定义的质量度量来明确训练功能约束,而不是目标输出。我们探索了PCGRL在3D领域的应用,其中内容生成任务自然具有更大的复杂性和与现实世界应用的潜在相关性。在这里,我们介绍了3D领域Minecraft的几个PCGRL任务。这些任务将挑战基于强化学习的生成器,使用通常在3D环境中发现的功能,如跳跃、多维移动和重力。我们训练代理来优化这些任务,以探索PCGRL中现有的功能。智能体能够生成相对复杂多样的层次,并泛化到随机初始状态和控制目标。所提出的任务中的可控性测试证明了它们在分析3D生成器成功和失败方面的实用性。我们认为这些生成器既可以作为游戏设计师的共同创造工具,也可以作为玩家代理课程学习中预先训练的环境生成器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Controllable 3D Level Generators
Procedural Content Generation via Reinforcement Learning (PCGRL) foregoes the need for large human-authored data-sets and allows agents to train explicitly on functional constraints, using computable, user-defined measures of quality instead of target output. We explore the application of PCGRL to 3D domains, in which content-generation tasks naturally have greater complexity and potential pertinence to real-world applications. Here, we introduce several PCGRL tasks for the 3D domain, Minecraft. These tasks will challenge RL-based generators using affordances often found in 3D environments, such as jumping, multiple dimensional movement, and gravity. We train agents to optimize each of these tasks to explore the capabilities of existing in PCGRL. The agents are able to generate relatively complex and diverse levels, and generalize to random initial states and control targets. Controllability tests in the presented tasks demonstrate their utility to analyze success and failure for 3D generators. We argue that these generators could serve both as co-creative tools for game designers, and as pre-trained environment generators in curriculum learning for player agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信