Lizethe Guadalupe Reyna-Morán, F. Luna-Rosas, Gricelda Medina-Veloz
{"title":"在社交网络中寻找自杀模式的模型设计","authors":"Lizethe Guadalupe Reyna-Morán, F. Luna-Rosas, Gricelda Medina-Veloz","doi":"10.35429/jitc.2022.16.6.1.13","DOIUrl":null,"url":null,"abstract":"Many people with suicidal ideation use social forum platforms to post or discuss information about this complex topic. The key objective of our study is to design and evaluate a model to find patterns linguistically related to suicide. We address the detection of suicidal ideation through machine learning by applying it to the social network Twitter. To do this, we use different linguistic processors to obtain characteristics of each tweet and then catalog them using unsupervised classifiers. Finally, this information is used by 7 types of supervised learning (Naive Bayes, KNN, MLP, SVM, Decision Tree, Adaboost y Random Forest) and perform a comparative analysis of the classifiers using evaluation parameters, mainly accuracy. Our experiment shows 42 classification results, as well as sequential and parallel processing time data from the best-supervised machine learning, Random Forest.","PeriodicalId":143010,"journal":{"name":"Revista Tecnologías de la Información y Comunicaciones","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model design to look for patterns related to suicide in social networks\",\"authors\":\"Lizethe Guadalupe Reyna-Morán, F. Luna-Rosas, Gricelda Medina-Veloz\",\"doi\":\"10.35429/jitc.2022.16.6.1.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many people with suicidal ideation use social forum platforms to post or discuss information about this complex topic. The key objective of our study is to design and evaluate a model to find patterns linguistically related to suicide. We address the detection of suicidal ideation through machine learning by applying it to the social network Twitter. To do this, we use different linguistic processors to obtain characteristics of each tweet and then catalog them using unsupervised classifiers. Finally, this information is used by 7 types of supervised learning (Naive Bayes, KNN, MLP, SVM, Decision Tree, Adaboost y Random Forest) and perform a comparative analysis of the classifiers using evaluation parameters, mainly accuracy. Our experiment shows 42 classification results, as well as sequential and parallel processing time data from the best-supervised machine learning, Random Forest.\",\"PeriodicalId\":143010,\"journal\":{\"name\":\"Revista Tecnologías de la Información y Comunicaciones\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Tecnologías de la Información y Comunicaciones\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35429/jitc.2022.16.6.1.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Tecnologías de la Información y Comunicaciones","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35429/jitc.2022.16.6.1.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
许多有自杀想法的人使用社交论坛平台发布或讨论有关这个复杂话题的信息。我们研究的主要目的是设计和评估一个模型,以发现与自杀有关的语言模式。我们通过将机器学习应用于社交网络Twitter来解决自杀意念的检测问题。为了做到这一点,我们使用不同的语言处理器来获取每条推文的特征,然后使用无监督分类器对它们进行分类。最后,将这些信息用于7种监督学习(Naive Bayes, KNN, MLP, SVM, Decision Tree, Adaboost y Random Forest),并使用评估参数(主要是准确率)对分类器进行比较分析。我们的实验显示了42个分类结果,以及来自最佳监督机器学习随机森林的顺序和并行处理时间数据。
Model design to look for patterns related to suicide in social networks
Many people with suicidal ideation use social forum platforms to post or discuss information about this complex topic. The key objective of our study is to design and evaluate a model to find patterns linguistically related to suicide. We address the detection of suicidal ideation through machine learning by applying it to the social network Twitter. To do this, we use different linguistic processors to obtain characteristics of each tweet and then catalog them using unsupervised classifiers. Finally, this information is used by 7 types of supervised learning (Naive Bayes, KNN, MLP, SVM, Decision Tree, Adaboost y Random Forest) and perform a comparative analysis of the classifiers using evaluation parameters, mainly accuracy. Our experiment shows 42 classification results, as well as sequential and parallel processing time data from the best-supervised machine learning, Random Forest.