{"title":"关于离散Brunn-Minkowski不等式的Gradner&Gronchi","authors":"David Iglesias","doi":"10.1016/j.endm.2018.06.051","DOIUrl":null,"url":null,"abstract":"<div><p>In 2002 Gardner and Gronchi obtained a discrete analogue of the Brunn-Minkowski inequality. They proved that for finite subsets <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><mi>dim</mi><mo></mo><mi>B</mi><mo>=</mo><mi>n</mi></math></span>, the inequality <span><math><mo>|</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>|</mo><mo>≥</mo><mo>|</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mrow><mi>B</mi></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow><mrow><mi>B</mi></mrow></msubsup><mo>|</mo></math></span> holds, where <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mrow><mi>B</mi></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow><mrow><mi>B</mi></mrow></msubsup></math></span> are particular subsets of the integer lattice, called <em>B</em>-initial segments. The aim of this paper is to provide a method in order to compute <span><math><mo>|</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mrow><mi>B</mi></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow><mrow><mi>B</mi></mrow></msubsup><mo>|</mo></math></span> and so, to implement this inequality.</p></div>","PeriodicalId":35408,"journal":{"name":"Electronic Notes in Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.051","citationCount":"0","resultStr":"{\"title\":\"On the discrete Brunn-Minkowski inequality by Gradner&Gronchi\",\"authors\":\"David Iglesias\",\"doi\":\"10.1016/j.endm.2018.06.051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In 2002 Gardner and Gronchi obtained a discrete analogue of the Brunn-Minkowski inequality. They proved that for finite subsets <span><math><mi>A</mi><mo>,</mo><mi>B</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> with <span><math><mi>dim</mi><mo></mo><mi>B</mi><mo>=</mo><mi>n</mi></math></span>, the inequality <span><math><mo>|</mo><mi>A</mi><mo>+</mo><mi>B</mi><mo>|</mo><mo>≥</mo><mo>|</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mrow><mi>B</mi></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow><mrow><mi>B</mi></mrow></msubsup><mo>|</mo></math></span> holds, where <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mrow><mi>B</mi></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow><mrow><mi>B</mi></mrow></msubsup></math></span> are particular subsets of the integer lattice, called <em>B</em>-initial segments. The aim of this paper is to provide a method in order to compute <span><math><mo>|</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mo>|</mo><mi>A</mi><mo>|</mo></mrow><mrow><mi>B</mi></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mo>|</mo><mi>B</mi><mo>|</mo></mrow><mrow><mi>B</mi></mrow></msubsup><mo>|</mo></math></span> and so, to implement this inequality.</p></div>\",\"PeriodicalId\":35408,\"journal\":{\"name\":\"Electronic Notes in Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.endm.2018.06.051\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571065318301422\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571065318301422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
2002年,Gardner和Gronchi获得了Brunn-Minkowski不等式的离散模拟。他们证明了对于dim (B) =n的有限子集A,B∧Rn,不等式|A+B|≥|D|A|B+D|B|B|成立,其中D|A|B,D|B|B是整数格的特定子集,称为B初始段。本文的目的是提供一种计算|D| a |B+D|B|B|等的方法来实现这个不等式。
On the discrete Brunn-Minkowski inequality by Gradner&Gronchi
In 2002 Gardner and Gronchi obtained a discrete analogue of the Brunn-Minkowski inequality. They proved that for finite subsets with , the inequality holds, where are particular subsets of the integer lattice, called B-initial segments. The aim of this paper is to provide a method in order to compute and so, to implement this inequality.
期刊介绍:
Electronic Notes in Discrete Mathematics is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication is appropriate. Organizers of conferences whose proceedings appear in Electronic Notes in Discrete Mathematics, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.