基于Dropout正则化的海洋生物多样性分类

Amir M. Rahimi, Robert J. Miller, D. Fedorov, Santhoshkumar Sunderrajan, B. Doheny, H. Page, B. S. Manjunath
{"title":"基于Dropout正则化的海洋生物多样性分类","authors":"Amir M. Rahimi, Robert J. Miller, D. Fedorov, Santhoshkumar Sunderrajan, B. Doheny, H. Page, B. S. Manjunath","doi":"10.1109/CVAUI.2014.17","DOIUrl":null,"url":null,"abstract":"Coastal marine ecosystems are highly productive and diverse, but biodiversity of underwater habitats is poorly described due to logistical and financial limitations of diving and submersible operations. Imagery is a promising way to address this challenge, but the complexity of diverse organisms thwarts simple automated analysis. We consider the problem of automated annotation of complex communities of sessile marine invertebrates and macroalgae in order to automate percent coverage estimation. We propose an efficient fusion technique amongst diverse classifiers based on the idea of \"dropout\" in machine learning. We use dropout technique to weight each classifier implicitly and for each specie we optimize the region of interest (ROI) for highest accuracy. The preliminary results are promising and show 20% increase in average accuracy (over 30 species) when compared with the best base performance of Random Forest classifiers. The data set along with human \"ground truth\" annotations are available to the public.","PeriodicalId":424941,"journal":{"name":"2014 ICPR Workshop on Computer Vision for Analysis of Underwater Imagery","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Marine Biodiversity Classification Using Dropout Regularization\",\"authors\":\"Amir M. Rahimi, Robert J. Miller, D. Fedorov, Santhoshkumar Sunderrajan, B. Doheny, H. Page, B. S. Manjunath\",\"doi\":\"10.1109/CVAUI.2014.17\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coastal marine ecosystems are highly productive and diverse, but biodiversity of underwater habitats is poorly described due to logistical and financial limitations of diving and submersible operations. Imagery is a promising way to address this challenge, but the complexity of diverse organisms thwarts simple automated analysis. We consider the problem of automated annotation of complex communities of sessile marine invertebrates and macroalgae in order to automate percent coverage estimation. We propose an efficient fusion technique amongst diverse classifiers based on the idea of \\\"dropout\\\" in machine learning. We use dropout technique to weight each classifier implicitly and for each specie we optimize the region of interest (ROI) for highest accuracy. The preliminary results are promising and show 20% increase in average accuracy (over 30 species) when compared with the best base performance of Random Forest classifiers. The data set along with human \\\"ground truth\\\" annotations are available to the public.\",\"PeriodicalId\":424941,\"journal\":{\"name\":\"2014 ICPR Workshop on Computer Vision for Analysis of Underwater Imagery\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 ICPR Workshop on Computer Vision for Analysis of Underwater Imagery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVAUI.2014.17\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 ICPR Workshop on Computer Vision for Analysis of Underwater Imagery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVAUI.2014.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

沿海海洋生态系统具有高度的生产力和多样性,但由于潜水和潜水作业的后勤和财政限制,对水下栖息地的生物多样性描述甚少。图像是解决这一挑战的一种很有前途的方法,但生物多样性的复杂性阻碍了简单的自动化分析。我们考虑了对海洋无脊椎动物和大型藻类复杂群落的自动标注问题,以实现百分比覆盖估计的自动化。基于机器学习中的“dropout”思想,提出了一种高效的分类器融合技术。我们使用dropout技术隐式地对每个分类器进行加权,并对每个物种优化感兴趣的区域(ROI)以获得最高的准确性。初步结果是有希望的,与随机森林分类器的最佳基础性能相比,平均准确率(超过30个物种)提高了20%。该数据集以及人类的“地面真相”注释对公众开放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Marine Biodiversity Classification Using Dropout Regularization
Coastal marine ecosystems are highly productive and diverse, but biodiversity of underwater habitats is poorly described due to logistical and financial limitations of diving and submersible operations. Imagery is a promising way to address this challenge, but the complexity of diverse organisms thwarts simple automated analysis. We consider the problem of automated annotation of complex communities of sessile marine invertebrates and macroalgae in order to automate percent coverage estimation. We propose an efficient fusion technique amongst diverse classifiers based on the idea of "dropout" in machine learning. We use dropout technique to weight each classifier implicitly and for each specie we optimize the region of interest (ROI) for highest accuracy. The preliminary results are promising and show 20% increase in average accuracy (over 30 species) when compared with the best base performance of Random Forest classifiers. The data set along with human "ground truth" annotations are available to the public.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信