利用认知方法从彩色图像中提取道路特征

C. Rotaru, T. Graf, Jianwei Zhang
{"title":"利用认知方法从彩色图像中提取道路特征","authors":"C. Rotaru, T. Graf, Jianwei Zhang","doi":"10.1109/IVS.2004.1336398","DOIUrl":null,"url":null,"abstract":"This paper introduces a cognitive method for extracting significant road information (like road extents, lane markings) from mono-color images. The system is able to identify all traffic lanes and to distinguish between continuous and broken lane markings. Its output is useful in driver assistance systems (for example lane-departure warning). The cognitive aspects of the system are highlighted and the implemented algorithms are described. Finally, some results of the performed tests are introduced before drawing the conclusion.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Extracting road features from color images using a cognitive approach\",\"authors\":\"C. Rotaru, T. Graf, Jianwei Zhang\",\"doi\":\"10.1109/IVS.2004.1336398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a cognitive method for extracting significant road information (like road extents, lane markings) from mono-color images. The system is able to identify all traffic lanes and to distinguish between continuous and broken lane markings. Its output is useful in driver assistance systems (for example lane-departure warning). The cognitive aspects of the system are highlighted and the implemented algorithms are described. Finally, some results of the performed tests are introduced before drawing the conclusion.\",\"PeriodicalId\":296386,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2004.1336398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

摘要

本文介绍了一种从单色图像中提取重要道路信息(如道路范围、车道标记)的认知方法。该系统能够识别所有的交通车道,并区分连续和破碎的车道标记。它的输出在驾驶员辅助系统中很有用(例如车道偏离警告)。强调了系统的认知方面,并描述了实现的算法。最后介绍了一些试验结果,并给出了结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting road features from color images using a cognitive approach
This paper introduces a cognitive method for extracting significant road information (like road extents, lane markings) from mono-color images. The system is able to identify all traffic lanes and to distinguish between continuous and broken lane markings. Its output is useful in driver assistance systems (for example lane-departure warning). The cognitive aspects of the system are highlighted and the implemented algorithms are described. Finally, some results of the performed tests are introduced before drawing the conclusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信