ATUA:一个更新驱动的应用测试工具

C. Ngo, F. Pastore, L. Briand
{"title":"ATUA:一个更新驱动的应用测试工具","authors":"C. Ngo, F. Pastore, L. Briand","doi":"10.1145/3533767.3543293","DOIUrl":null,"url":null,"abstract":"App testing tools tend to generate thousand test inputs; they help engineers identify crashing conditions but not functional failures. Indeed, detecting functional failures requires the visual inspection of App outputs, which is infeasible for thousands of inputs. Existing App testing tools ignore that most of the Apps are frequently updated and engineers are mainly interested in testing the updated functionalities; indeed, automated regression test cases can be used otherwise. We present ATUA, an open source tool targeting Android Apps. It achieves high coverage of the updated App code with a small number of test inputs, thus alleviating the test oracle problem (less outputs to inspect). It implements a model-based approach that synthesizes App models with static analysis, integrates a dynamically-refined state abstraction function and combines complementary testing strategies, including (1) coverage of the model structure, (2) coverage of the App code, (3) random exploration, and (4) coverage of dependencies identified through information retrieval. Our empirical evaluation, conducted with nine popular Android Apps (72 versions), has shown that ATUA, compared to state-of-the-art approaches, achieves higher code coverage while producing fewer outputs to be manually inspected. A demo video is available at https://youtu.be/RqQ1z_Nkaqo.","PeriodicalId":412271,"journal":{"name":"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ATUA: an update-driven app testing tool\",\"authors\":\"C. Ngo, F. Pastore, L. Briand\",\"doi\":\"10.1145/3533767.3543293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"App testing tools tend to generate thousand test inputs; they help engineers identify crashing conditions but not functional failures. Indeed, detecting functional failures requires the visual inspection of App outputs, which is infeasible for thousands of inputs. Existing App testing tools ignore that most of the Apps are frequently updated and engineers are mainly interested in testing the updated functionalities; indeed, automated regression test cases can be used otherwise. We present ATUA, an open source tool targeting Android Apps. It achieves high coverage of the updated App code with a small number of test inputs, thus alleviating the test oracle problem (less outputs to inspect). It implements a model-based approach that synthesizes App models with static analysis, integrates a dynamically-refined state abstraction function and combines complementary testing strategies, including (1) coverage of the model structure, (2) coverage of the App code, (3) random exploration, and (4) coverage of dependencies identified through information retrieval. Our empirical evaluation, conducted with nine popular Android Apps (72 versions), has shown that ATUA, compared to state-of-the-art approaches, achieves higher code coverage while producing fewer outputs to be manually inspected. A demo video is available at https://youtu.be/RqQ1z_Nkaqo.\",\"PeriodicalId\":412271,\"journal\":{\"name\":\"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3533767.3543293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533767.3543293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

应用测试工具往往会产生上千个测试输入;它们可以帮助工程师识别坠机情况,但不能识别功能故障。事实上,检测功能故障需要对App输出进行视觉检查,这对于数千个输入来说是不可行的。现有的应用程序测试工具忽略了大多数应用程序是经常更新的,工程师主要对测试更新的功能感兴趣;实际上,自动化回归测试用例可以用其他方式使用。我们介绍ATUA,一个针对Android应用程序的开源工具。它以少量的测试输入实现了更新的App代码的高覆盖率,从而缓解了测试oracle问题(较少的要检查的输出)。它实现了一种基于模型的方法,将应用模型与静态分析相结合,集成了一个动态细化的状态抽象功能,并结合了互补的测试策略,包括(1)模型结构的覆盖,(2)应用代码的覆盖,(3)随机探索,(4)通过信息检索识别的依赖关系的覆盖。我们对9个流行的Android应用程序(72个版本)进行的实证评估表明,与最先进的方法相比,ATUA实现了更高的代码覆盖率,同时产生更少的需要手工检查的输出。演示视频可在https://youtu.be/RqQ1z_Nkaqo上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ATUA: an update-driven app testing tool
App testing tools tend to generate thousand test inputs; they help engineers identify crashing conditions but not functional failures. Indeed, detecting functional failures requires the visual inspection of App outputs, which is infeasible for thousands of inputs. Existing App testing tools ignore that most of the Apps are frequently updated and engineers are mainly interested in testing the updated functionalities; indeed, automated regression test cases can be used otherwise. We present ATUA, an open source tool targeting Android Apps. It achieves high coverage of the updated App code with a small number of test inputs, thus alleviating the test oracle problem (less outputs to inspect). It implements a model-based approach that synthesizes App models with static analysis, integrates a dynamically-refined state abstraction function and combines complementary testing strategies, including (1) coverage of the model structure, (2) coverage of the App code, (3) random exploration, and (4) coverage of dependencies identified through information retrieval. Our empirical evaluation, conducted with nine popular Android Apps (72 versions), has shown that ATUA, compared to state-of-the-art approaches, achieves higher code coverage while producing fewer outputs to be manually inspected. A demo video is available at https://youtu.be/RqQ1z_Nkaqo.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信