机器学习与故障破裂:综述

C. Ren, Claudia Hulbert, P. Johnson, B. Rouet-Leduc
{"title":"机器学习与故障破裂:综述","authors":"C. Ren, Claudia Hulbert, P. Johnson, B. Rouet-Leduc","doi":"10.31223/osf.io/g2dt8","DOIUrl":null,"url":null,"abstract":"Geophysics has historically been a data-driven field, however in recent years the exponential increase of available data has lead to increased adoption of machine learning techniques and algorithm for analysis, detection and forecasting applications to faulting. This work reviews recent advances in the application of machine learning in the study of fault rupture ranging from the laboratory to Solid Earth.","PeriodicalId":251648,"journal":{"name":"Machine Learning in Geosciences","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Machine learning and fault rupture: a review\",\"authors\":\"C. Ren, Claudia Hulbert, P. Johnson, B. Rouet-Leduc\",\"doi\":\"10.31223/osf.io/g2dt8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geophysics has historically been a data-driven field, however in recent years the exponential increase of available data has lead to increased adoption of machine learning techniques and algorithm for analysis, detection and forecasting applications to faulting. This work reviews recent advances in the application of machine learning in the study of fault rupture ranging from the laboratory to Solid Earth.\",\"PeriodicalId\":251648,\"journal\":{\"name\":\"Machine Learning in Geosciences\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Learning in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31223/osf.io/g2dt8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31223/osf.io/g2dt8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

地球物理学历来是一个数据驱动的领域,但近年来,可用数据的指数级增长导致机器学习技术和算法越来越多地用于断层分析、检测和预测应用。本文综述了机器学习在断层破裂研究中的最新进展,范围从实验室到固体地球。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning and fault rupture: a review
Geophysics has historically been a data-driven field, however in recent years the exponential increase of available data has lead to increased adoption of machine learning techniques and algorithm for analysis, detection and forecasting applications to faulting. This work reviews recent advances in the application of machine learning in the study of fault rupture ranging from the laboratory to Solid Earth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信