基于阶段的耦合科学工作流的自适应数据放置

Qian Sun, Tong Jin, Melissa Romanus, H. Bui, Fan Zhang, Hongfeng Yu, H. Kolla, S. Klasky, Jacqueline H. Chen, M. Parashar
{"title":"基于阶段的耦合科学工作流的自适应数据放置","authors":"Qian Sun, Tong Jin, Melissa Romanus, H. Bui, Fan Zhang, Hongfeng Yu, H. Kolla, S. Klasky, Jacqueline H. Chen, M. Parashar","doi":"10.1145/2807591.2807669","DOIUrl":null,"url":null,"abstract":"Data staging and in-situ/in-transit data processing are emerging as attractive approaches for supporting extreme scale scientific workflows. These approaches improve end-to-end performance by enabling runtime data sharing between coupled simulations and data analytics components of the workflow. However, the complex and dynamic data exchange patterns exhibited by the workflows coupled with the varied data access behaviors make efficient data placement within the staging area challenging. In this paper, we present an adaptive data placement approach to address these challenges. Our approach adapts data placement based on application-specific dynamic data access patterns, and applies access pattern-driven and location-aware mechanisms to reduce data access costs and to support efficient data sharing between the multiple workflow components. We experimentally demonstrate the effectiveness of our approach on Titan Cray XK7 using a real combustion-analyses workflow. The evaluation results demonstrate that our approach can effectively improve data access performance and overall efficiency of coupled scientific workflows.","PeriodicalId":117494,"journal":{"name":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Adaptive data placement for staging-based coupled scientific workflows\",\"authors\":\"Qian Sun, Tong Jin, Melissa Romanus, H. Bui, Fan Zhang, Hongfeng Yu, H. Kolla, S. Klasky, Jacqueline H. Chen, M. Parashar\",\"doi\":\"10.1145/2807591.2807669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data staging and in-situ/in-transit data processing are emerging as attractive approaches for supporting extreme scale scientific workflows. These approaches improve end-to-end performance by enabling runtime data sharing between coupled simulations and data analytics components of the workflow. However, the complex and dynamic data exchange patterns exhibited by the workflows coupled with the varied data access behaviors make efficient data placement within the staging area challenging. In this paper, we present an adaptive data placement approach to address these challenges. Our approach adapts data placement based on application-specific dynamic data access patterns, and applies access pattern-driven and location-aware mechanisms to reduce data access costs and to support efficient data sharing between the multiple workflow components. We experimentally demonstrate the effectiveness of our approach on Titan Cray XK7 using a real combustion-analyses workflow. The evaluation results demonstrate that our approach can effectively improve data access performance and overall efficiency of coupled scientific workflows.\",\"PeriodicalId\":117494,\"journal\":{\"name\":\"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2807591.2807669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC15: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2807591.2807669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

数据分期和原位/在途数据处理正在成为支持极端规模科学工作流程的有吸引力的方法。这些方法通过支持工作流的耦合模拟和数据分析组件之间的运行时数据共享来提高端到端性能。然而,工作流所显示的复杂和动态的数据交换模式,加上各种数据访问行为,使得在staging区域内进行有效的数据放置具有挑战性。在本文中,我们提出了一种自适应数据放置方法来解决这些挑战。我们的方法基于特定于应用程序的动态数据访问模式来调整数据放置,并应用访问模式驱动和位置感知机制来降低数据访问成本,并支持多个工作流组件之间的有效数据共享。我们通过实验证明了我们的方法在泰坦克雷XK7上使用真实的燃烧分析工作流程的有效性。评估结果表明,该方法可以有效提高耦合科学工作流的数据访问性能和整体效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive data placement for staging-based coupled scientific workflows
Data staging and in-situ/in-transit data processing are emerging as attractive approaches for supporting extreme scale scientific workflows. These approaches improve end-to-end performance by enabling runtime data sharing between coupled simulations and data analytics components of the workflow. However, the complex and dynamic data exchange patterns exhibited by the workflows coupled with the varied data access behaviors make efficient data placement within the staging area challenging. In this paper, we present an adaptive data placement approach to address these challenges. Our approach adapts data placement based on application-specific dynamic data access patterns, and applies access pattern-driven and location-aware mechanisms to reduce data access costs and to support efficient data sharing between the multiple workflow components. We experimentally demonstrate the effectiveness of our approach on Titan Cray XK7 using a real combustion-analyses workflow. The evaluation results demonstrate that our approach can effectively improve data access performance and overall efficiency of coupled scientific workflows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信