使用CUDA的伪随机数生成器的统计耗时测试的高效并行化

M. Osama, A. Hussein
{"title":"使用CUDA的伪随机数生成器的统计耗时测试的高效并行化","authors":"M. Osama, A. Hussein","doi":"10.1109/ICCES.2015.7393009","DOIUrl":null,"url":null,"abstract":"This paper focuses on parallelizing the most time-consuming statistical tests of the pseudorandom number generators for execution on the Graphics Processing Unit using NVIDIA Compute Unified Device Architecture. We propose new efficient parallel strategies for several tests that exhaust most time and hardware resources from a Statistical Test Suite for Random and Pseudorandom Number Generators of the National Institute of Standards and Technology. We show that these tests can benefit from the GPU solutions, leading to substantial improvements in speed-up even though keeping the accuracy of the test results. Our results reveal that the new parallel methods execute up to 200x faster compared to their sequential counterparts of the NIST.","PeriodicalId":227813,"journal":{"name":"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A highly-effective parallelization of statistical time-consuming tests of Pseudorandom Number Generators using CUDA\",\"authors\":\"M. Osama, A. Hussein\",\"doi\":\"10.1109/ICCES.2015.7393009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on parallelizing the most time-consuming statistical tests of the pseudorandom number generators for execution on the Graphics Processing Unit using NVIDIA Compute Unified Device Architecture. We propose new efficient parallel strategies for several tests that exhaust most time and hardware resources from a Statistical Test Suite for Random and Pseudorandom Number Generators of the National Institute of Standards and Technology. We show that these tests can benefit from the GPU solutions, leading to substantial improvements in speed-up even though keeping the accuracy of the test results. Our results reveal that the new parallel methods execute up to 200x faster compared to their sequential counterparts of the NIST.\",\"PeriodicalId\":227813,\"journal\":{\"name\":\"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCES.2015.7393009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2015.7393009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的重点是并行化伪随机数生成器最耗时的统计测试,以便在使用NVIDIA计算统一设备架构的图形处理单元上执行。我们提出了新的有效的并行策略,用于几个测试,这些测试消耗了国家标准与技术研究所的随机数和伪随机数生成器统计测试套件的大部分时间和硬件资源。我们表明,这些测试可以从GPU解决方案中受益,即使保持测试结果的准确性,也可以大幅提高速度。我们的结果表明,与NIST的顺序方法相比,新的并行方法执行速度快了200倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A highly-effective parallelization of statistical time-consuming tests of Pseudorandom Number Generators using CUDA
This paper focuses on parallelizing the most time-consuming statistical tests of the pseudorandom number generators for execution on the Graphics Processing Unit using NVIDIA Compute Unified Device Architecture. We propose new efficient parallel strategies for several tests that exhaust most time and hardware resources from a Statistical Test Suite for Random and Pseudorandom Number Generators of the National Institute of Standards and Technology. We show that these tests can benefit from the GPU solutions, leading to substantial improvements in speed-up even though keeping the accuracy of the test results. Our results reveal that the new parallel methods execute up to 200x faster compared to their sequential counterparts of the NIST.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信