粒子群优化算法的多相泛化

B. Al-kazemi, C. Mohan
{"title":"粒子群优化算法的多相泛化","authors":"B. Al-kazemi, C. Mohan","doi":"10.1109/CEC.2002.1006283","DOIUrl":null,"url":null,"abstract":"Multi-phase particle swarm optimization is a new algorithm to be used for discrete and continuous problems. In this algorithm, different groups of particles have trajectories that proceed with differing goals in different phases of the algorithm. On several benchmark problems, the algorithm outperforms standard particle swarm optimization, genetic algorithm, and evolution programming.","PeriodicalId":184547,"journal":{"name":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"Multi-phase generalization of the particle swarm optimization algorithm\",\"authors\":\"B. Al-kazemi, C. Mohan\",\"doi\":\"10.1109/CEC.2002.1006283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-phase particle swarm optimization is a new algorithm to be used for discrete and continuous problems. In this algorithm, different groups of particles have trajectories that proceed with differing goals in different phases of the algorithm. On several benchmark problems, the algorithm outperforms standard particle swarm optimization, genetic algorithm, and evolution programming.\",\"PeriodicalId\":184547,\"journal\":{\"name\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2002.1006283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2002.1006283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

多相粒子群优化算法是一种用于求解离散和连续问题的新算法。在该算法中,不同的粒子组在算法的不同阶段具有不同目标的轨迹。在一些基准问题上,该算法优于标准粒子群优化、遗传算法和进化规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-phase generalization of the particle swarm optimization algorithm
Multi-phase particle swarm optimization is a new algorithm to be used for discrete and continuous problems. In this algorithm, different groups of particles have trajectories that proceed with differing goals in different phases of the algorithm. On several benchmark problems, the algorithm outperforms standard particle swarm optimization, genetic algorithm, and evolution programming.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信