随机森林、多元回归与反向传播方法在印尼公寓价格指数预测中的应用分析

I. Saputra, S. Sa'adah, Prasti Eko Yunanto
{"title":"随机森林、多元回归与反向传播方法在印尼公寓价格指数预测中的应用分析","authors":"I. Saputra, S. Sa'adah, Prasti Eko Yunanto","doi":"10.26555/JITEKI.V7I2.20997","DOIUrl":null,"url":null,"abstract":"This study focuses on predicting the apartment price index in Indonesia using property survey data from Bank Indonesia. In the era of the Covid-19 pandemic, accurately predicting the sale and purchase price of apartments is essential to minimize the impact of losses, thus making apartment prices attractive to predict. The machine learning approach used to predict the apartment price index are the Random Forest method, the Multiple Regression method, and the Backpropagation method. This study aims to determine which method is more effective in predicting small amounts of data accuracy. The data used is apartment price index data from 2012 to 2019 in the JABODEBEK area. The research will produce prediction accuracy that will determine the effectiveness of the application of the method. The Random Forest method with parameters n_estimators=100 and max_features=”log2” produces an R2 accuracy of 0.977. The Multiple Regression method with a correlation between the selling price and rental price variables is 0.746, and the rental inflation variable is 0.042 produces an R2 accuracy of 0.559. The Backpropagation method with a 1000-4000-1 hidden scheme and 20000 iterations produces an R2 accuracy of 0.996. Therefore, the Backpropagation method is more suitable in this study compared to the other two methods. The Backpropagation method is suitable because it gets almost perfect accuracy, so this method will minimize losses in investing in buying and selling apartments in the Covid-19 pandemic era.","PeriodicalId":244902,"journal":{"name":"Jurnal Ilmiah Teknik Elektro Komputer dan Informatika","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Random Forest, Multiple Regression, and Backpropagation Methods in Predicting Apartment Price Index in Indonesia\",\"authors\":\"I. Saputra, S. Sa'adah, Prasti Eko Yunanto\",\"doi\":\"10.26555/JITEKI.V7I2.20997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on predicting the apartment price index in Indonesia using property survey data from Bank Indonesia. In the era of the Covid-19 pandemic, accurately predicting the sale and purchase price of apartments is essential to minimize the impact of losses, thus making apartment prices attractive to predict. The machine learning approach used to predict the apartment price index are the Random Forest method, the Multiple Regression method, and the Backpropagation method. This study aims to determine which method is more effective in predicting small amounts of data accuracy. The data used is apartment price index data from 2012 to 2019 in the JABODEBEK area. The research will produce prediction accuracy that will determine the effectiveness of the application of the method. The Random Forest method with parameters n_estimators=100 and max_features=”log2” produces an R2 accuracy of 0.977. The Multiple Regression method with a correlation between the selling price and rental price variables is 0.746, and the rental inflation variable is 0.042 produces an R2 accuracy of 0.559. The Backpropagation method with a 1000-4000-1 hidden scheme and 20000 iterations produces an R2 accuracy of 0.996. Therefore, the Backpropagation method is more suitable in this study compared to the other two methods. The Backpropagation method is suitable because it gets almost perfect accuracy, so this method will minimize losses in investing in buying and selling apartments in the Covid-19 pandemic era.\",\"PeriodicalId\":244902,\"journal\":{\"name\":\"Jurnal Ilmiah Teknik Elektro Komputer dan Informatika\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Ilmiah Teknik Elektro Komputer dan Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26555/JITEKI.V7I2.20997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Teknik Elektro Komputer dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26555/JITEKI.V7I2.20997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的重点是利用印度尼西亚银行的房地产调查数据预测印度尼西亚的公寓价格指数。在新型冠状病毒感染症(Covid-19)的时代,准确预测公寓的买卖价格对于减少损失的影响至关重要,从而使公寓价格具有预测的吸引力。预测公寓价格指数的机器学习方法有随机森林法、多元回归法、反向传播法等。本研究旨在确定哪种方法在预测少量数据准确性方面更有效。使用的数据是JABODEBEK地区2012年至2019年的公寓价格指数数据。研究将产生预测精度,这将决定该方法应用的有效性。参数n_estimators=100, max_features=“log2”的Random Forest方法产生的R2精度为0.977。采用多元回归方法,销售价格与租金价格变量的相关系数为0.746,租金通胀变量为0.042,R2精度为0.559。采用1000-4000-1隐藏方案、20000次迭代的反向传播方法,R2精度为0.996。因此,与其他两种方法相比,反向传播方法更适合于本研究。反向传播法具有近乎完美的准确性,因此在新冠疫情时期,这种方法可以最大限度地减少买卖公寓的投资损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Random Forest, Multiple Regression, and Backpropagation Methods in Predicting Apartment Price Index in Indonesia
This study focuses on predicting the apartment price index in Indonesia using property survey data from Bank Indonesia. In the era of the Covid-19 pandemic, accurately predicting the sale and purchase price of apartments is essential to minimize the impact of losses, thus making apartment prices attractive to predict. The machine learning approach used to predict the apartment price index are the Random Forest method, the Multiple Regression method, and the Backpropagation method. This study aims to determine which method is more effective in predicting small amounts of data accuracy. The data used is apartment price index data from 2012 to 2019 in the JABODEBEK area. The research will produce prediction accuracy that will determine the effectiveness of the application of the method. The Random Forest method with parameters n_estimators=100 and max_features=”log2” produces an R2 accuracy of 0.977. The Multiple Regression method with a correlation between the selling price and rental price variables is 0.746, and the rental inflation variable is 0.042 produces an R2 accuracy of 0.559. The Backpropagation method with a 1000-4000-1 hidden scheme and 20000 iterations produces an R2 accuracy of 0.996. Therefore, the Backpropagation method is more suitable in this study compared to the other two methods. The Backpropagation method is suitable because it gets almost perfect accuracy, so this method will minimize losses in investing in buying and selling apartments in the Covid-19 pandemic era.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信