风格传输自动编码器为高效的深语音转换

Ilya Makarov, Denis Zuenko
{"title":"风格传输自动编码器为高效的深语音转换","authors":"Ilya Makarov, Denis Zuenko","doi":"10.1109/CINTI53070.2021.9668528","DOIUrl":null,"url":null,"abstract":"We consider the problem of voice cloning, which is desirable in many film-related industries, and developed a new modification of the AutoVC state-of-the-art model in the task of voice conversion. We studied the replacement of recurrent modules with convolutional layers while maintaining the quality of the original model. The result of our work showed the speed improvement on longer voice tracks and faster training with the tiniest deterioration in sound quality, as evidenced by the reconstitution loss and Mel-cepstral distortion.","PeriodicalId":340545,"journal":{"name":"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Style-transfer Autoencoder for Efficient Deep Voice Conversion\",\"authors\":\"Ilya Makarov, Denis Zuenko\",\"doi\":\"10.1109/CINTI53070.2021.9668528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of voice cloning, which is desirable in many film-related industries, and developed a new modification of the AutoVC state-of-the-art model in the task of voice conversion. We studied the replacement of recurrent modules with convolutional layers while maintaining the quality of the original model. The result of our work showed the speed improvement on longer voice tracks and faster training with the tiniest deterioration in sound quality, as evidenced by the reconstitution loss and Mel-cepstral distortion.\",\"PeriodicalId\":340545,\"journal\":{\"name\":\"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CINTI53070.2021.9668528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Symposium on Computational Intelligence and Informatics (CINTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI53070.2021.9668528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑到语音克隆的问题,这是许多电影相关行业所需要的,并开发了一个新的修改AutoVC最先进的模型在语音转换的任务。我们研究了用卷积层替换循环模,同时保持原始模型的质量。我们的研究结果表明,在较长的音轨和较快的训练中,速度有所提高,但音质却有最小的恶化,这可以从重建损失和梅尔-倒谱失真中得到证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Style-transfer Autoencoder for Efficient Deep Voice Conversion
We consider the problem of voice cloning, which is desirable in many film-related industries, and developed a new modification of the AutoVC state-of-the-art model in the task of voice conversion. We studied the replacement of recurrent modules with convolutional layers while maintaining the quality of the original model. The result of our work showed the speed improvement on longer voice tracks and faster training with the tiniest deterioration in sound quality, as evidenced by the reconstitution loss and Mel-cepstral distortion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信