{"title":"神经网络在亚临界或临界状态下的峰值序列的近似熵","authors":"L. Ermini, L. Mesin, P. Massobrio","doi":"10.1109/CompEng.2018.8536242","DOIUrl":null,"url":null,"abstract":"Spontaneous activity of neural networks depends on their stage of development. Computational performances of a network increase when the maturation leads to a self-organized criticality. Thus, an increasing complexity in the behavior of the network is expected when it enters in this developmental stage, called critical state. We tested this hypothesis investigating with a Micro-Electrodes Array of 60 electrodes a neuronal culture that during maturation exhibited first a subcritical and then a critical state. We found that in the critical state the local complexity (measured in terms of Approximate Entropy) was larger than in subcritical conditions ($\\mathbf{mean}\\pm \\mathbf{std}$, ApEn about $\\mathbf{1.03}+\\mathbf{0.10},\\mathbf{0.77}+\\mathbf{0.18}$ in critical and sub-critical states, respectively; differences statistically significant), but only if the embedding dimension is at least 3 and the tolerance is fixed (we considered it equal to 1 ms, which is close to the characteristic time of neural communications).","PeriodicalId":194279,"journal":{"name":"2018 IEEE Workshop on Complexity in Engineering (COMPENG)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate Entropy of Spiking Series of a Neuronal Network in Either Subcritical or Critical State\",\"authors\":\"L. Ermini, L. Mesin, P. Massobrio\",\"doi\":\"10.1109/CompEng.2018.8536242\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spontaneous activity of neural networks depends on their stage of development. Computational performances of a network increase when the maturation leads to a self-organized criticality. Thus, an increasing complexity in the behavior of the network is expected when it enters in this developmental stage, called critical state. We tested this hypothesis investigating with a Micro-Electrodes Array of 60 electrodes a neuronal culture that during maturation exhibited first a subcritical and then a critical state. We found that in the critical state the local complexity (measured in terms of Approximate Entropy) was larger than in subcritical conditions ($\\\\mathbf{mean}\\\\pm \\\\mathbf{std}$, ApEn about $\\\\mathbf{1.03}+\\\\mathbf{0.10},\\\\mathbf{0.77}+\\\\mathbf{0.18}$ in critical and sub-critical states, respectively; differences statistically significant), but only if the embedding dimension is at least 3 and the tolerance is fixed (we considered it equal to 1 ms, which is close to the characteristic time of neural communications).\",\"PeriodicalId\":194279,\"journal\":{\"name\":\"2018 IEEE Workshop on Complexity in Engineering (COMPENG)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Workshop on Complexity in Engineering (COMPENG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CompEng.2018.8536242\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Workshop on Complexity in Engineering (COMPENG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CompEng.2018.8536242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Approximate Entropy of Spiking Series of a Neuronal Network in Either Subcritical or Critical State
Spontaneous activity of neural networks depends on their stage of development. Computational performances of a network increase when the maturation leads to a self-organized criticality. Thus, an increasing complexity in the behavior of the network is expected when it enters in this developmental stage, called critical state. We tested this hypothesis investigating with a Micro-Electrodes Array of 60 electrodes a neuronal culture that during maturation exhibited first a subcritical and then a critical state. We found that in the critical state the local complexity (measured in terms of Approximate Entropy) was larger than in subcritical conditions ($\mathbf{mean}\pm \mathbf{std}$, ApEn about $\mathbf{1.03}+\mathbf{0.10},\mathbf{0.77}+\mathbf{0.18}$ in critical and sub-critical states, respectively; differences statistically significant), but only if the embedding dimension is at least 3 and the tolerance is fixed (we considered it equal to 1 ms, which is close to the characteristic time of neural communications).