高光谱图像异常检测的局部-全局背景建模

E. Madar, O. Kuybeda, D. Malah, M. Barzohar
{"title":"高光谱图像异常检测的局部-全局背景建模","authors":"E. Madar, O. Kuybeda, D. Malah, M. Barzohar","doi":"10.1109/WHISPERS.2009.5289036","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of unsupervised detection of anomalies in hyperspectral images. Our proposed method is based on a novel statistical background modeling approach that combines local and global approaches. The local-global background model has the ability to adapt to all nuances of the background process like local approaches but avoids over-fitting due to a too high number of degrees of freedom, which produces a high false alarm rate. This is done by constraining the local background models to be interrelated. The results strongly prove the effectiveness of the proposed algorithm. We experimentally show that our localglobal algorithm performs better than several other global or local anomaly detection techniques, such as the well known RX or its Gaussian Mixture version (GMRX).","PeriodicalId":242447,"journal":{"name":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Local-global background modeling for anomaly detection in hyperspectral images\",\"authors\":\"E. Madar, O. Kuybeda, D. Malah, M. Barzohar\",\"doi\":\"10.1109/WHISPERS.2009.5289036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of unsupervised detection of anomalies in hyperspectral images. Our proposed method is based on a novel statistical background modeling approach that combines local and global approaches. The local-global background model has the ability to adapt to all nuances of the background process like local approaches but avoids over-fitting due to a too high number of degrees of freedom, which produces a high false alarm rate. This is done by constraining the local background models to be interrelated. The results strongly prove the effectiveness of the proposed algorithm. We experimentally show that our localglobal algorithm performs better than several other global or local anomaly detection techniques, such as the well known RX or its Gaussian Mixture version (GMRX).\",\"PeriodicalId\":242447,\"journal\":{\"name\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WHISPERS.2009.5289036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2009.5289036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

在本文中,我们解决了高光谱图像中异常的无监督检测问题。我们提出的方法是基于一种新的统计背景建模方法,结合了局部和全局方法。局部-全局背景模型具有像局部方法那样适应背景过程的所有细微差别的能力,但避免了由于自由度过高而导致的过度拟合,从而产生高虚警率。这是通过约束本地背景模型相互关联来实现的。实验结果有力地证明了该算法的有效性。我们的实验表明,我们的局部全局算法比其他几种全局或局部异常检测技术表现得更好,例如众所周知的RX或其高斯混合版本(GMRX)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local-global background modeling for anomaly detection in hyperspectral images
In this paper, we address the problem of unsupervised detection of anomalies in hyperspectral images. Our proposed method is based on a novel statistical background modeling approach that combines local and global approaches. The local-global background model has the ability to adapt to all nuances of the background process like local approaches but avoids over-fitting due to a too high number of degrees of freedom, which produces a high false alarm rate. This is done by constraining the local background models to be interrelated. The results strongly prove the effectiveness of the proposed algorithm. We experimentally show that our localglobal algorithm performs better than several other global or local anomaly detection techniques, such as the well known RX or its Gaussian Mixture version (GMRX).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信