基于人工神经网络建模的非对称双λ/2谐振带通滤波器设计

Huisheng Wang, X. Li
{"title":"基于人工神经网络建模的非对称双λ/2谐振带通滤波器设计","authors":"Huisheng Wang, X. Li","doi":"10.1109/IMWS.2008.4782308","DOIUrl":null,"url":null,"abstract":"This paper presents a design approach for an asymmetrical lambda/2 resonators bandpass filter by using the artificial neural network (ANN) modeling technique. Three important dimensions of the filter layout are used to capture critical input-output relationships in the ANN model. Once fully developed, the ANN model has been shown to be as accurate as an EM simulator and much more efficient computationally in the design optimization of the filter.","PeriodicalId":257679,"journal":{"name":"2008 IEEE MTT-S International Microwave Workshop Series on Art of Miniaturizing RF and Microwave Passive Components","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Asymmetrical Two λ/2 Resonators Bandpass Filter Design by Artificial Neural Network Modeling\",\"authors\":\"Huisheng Wang, X. Li\",\"doi\":\"10.1109/IMWS.2008.4782308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a design approach for an asymmetrical lambda/2 resonators bandpass filter by using the artificial neural network (ANN) modeling technique. Three important dimensions of the filter layout are used to capture critical input-output relationships in the ANN model. Once fully developed, the ANN model has been shown to be as accurate as an EM simulator and much more efficient computationally in the design optimization of the filter.\",\"PeriodicalId\":257679,\"journal\":{\"name\":\"2008 IEEE MTT-S International Microwave Workshop Series on Art of Miniaturizing RF and Microwave Passive Components\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE MTT-S International Microwave Workshop Series on Art of Miniaturizing RF and Microwave Passive Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMWS.2008.4782308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE MTT-S International Microwave Workshop Series on Art of Miniaturizing RF and Microwave Passive Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMWS.2008.4782308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种利用人工神经网络建模技术设计非对称λ /2谐振带通滤波器的方法。过滤器布局的三个重要维度用于捕获人工神经网络模型中的关键输入输出关系。一旦完全开发,人工神经网络模型已被证明是准确的电磁模拟器和更有效的计算在滤波器的设计优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymmetrical Two λ/2 Resonators Bandpass Filter Design by Artificial Neural Network Modeling
This paper presents a design approach for an asymmetrical lambda/2 resonators bandpass filter by using the artificial neural network (ANN) modeling technique. Three important dimensions of the filter layout are used to capture critical input-output relationships in the ANN model. Once fully developed, the ANN model has been shown to be as accurate as an EM simulator and much more efficient computationally in the design optimization of the filter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信