基于层次生成对抗网络的零件间依赖综合设计

Wei Chen, A. Jeyaseelan, M. Fuge
{"title":"基于层次生成对抗网络的零件间依赖综合设计","authors":"Wei Chen, A. Jeyaseelan, M. Fuge","doi":"10.1115/DETC2018-85339","DOIUrl":null,"url":null,"abstract":"Real-world designs usually consist of parts with hierarchical dependencies, i.e., the geometry of one component (a child shape) is dependent on another (a parent shape). We propose a method for synthesizing this type of design. It decomposes the problem of synthesizing the whole design into synthesizing each component separately but keeping the inter-component dependencies satisfied. This method constructs a two-level generative adversarial network to train two generative models for parent and child shapes, respectively. We then use the trained generative models to synthesize or explore parent and child shapes separately via a parent latent representation and infinite child latent representations, each conditioned on a parent shape. We evaluate and discuss the disentanglement and consistency of latent representations obtained by this method. We show that shapes change consistently along any direction in the latent space. This property is desirable for design exploration over the latent space.","PeriodicalId":138856,"journal":{"name":"Volume 2A: 44th Design Automation Conference","volume":"393 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Synthesizing Designs With Inter-Part Dependencies Using Hierarchical Generative Adversarial Networks\",\"authors\":\"Wei Chen, A. Jeyaseelan, M. Fuge\",\"doi\":\"10.1115/DETC2018-85339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-world designs usually consist of parts with hierarchical dependencies, i.e., the geometry of one component (a child shape) is dependent on another (a parent shape). We propose a method for synthesizing this type of design. It decomposes the problem of synthesizing the whole design into synthesizing each component separately but keeping the inter-component dependencies satisfied. This method constructs a two-level generative adversarial network to train two generative models for parent and child shapes, respectively. We then use the trained generative models to synthesize or explore parent and child shapes separately via a parent latent representation and infinite child latent representations, each conditioned on a parent shape. We evaluate and discuss the disentanglement and consistency of latent representations obtained by this method. We show that shapes change consistently along any direction in the latent space. This property is desirable for design exploration over the latent space.\",\"PeriodicalId\":138856,\"journal\":{\"name\":\"Volume 2A: 44th Design Automation Conference\",\"volume\":\"393 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: 44th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2018-85339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 44th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

现实世界的设计通常由具有层次依赖性的部件组成,例如,一个组件(子形状)的几何形状依赖于另一个组件(父形状)。我们提出了一种综合这类设计的方法。它将整个设计的综合问题分解为单独综合各个组件,同时保持组件间的依赖关系。该方法构建了一个两级生成对抗网络,分别训练父形状和子形状的两个生成模型。然后,我们使用经过训练的生成模型,通过一个父级潜在表征和无限个子级潜在表征,分别合成或探索父级和子级形状,每个子级潜在表征都以一个父级形状为条件。我们评估并讨论了用这种方法得到的潜在表征的解纠缠性和一致性。我们表明,在潜在空间中,形状沿着任何方向一致地变化。这一特性对于潜在空间的设计探索是理想的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesizing Designs With Inter-Part Dependencies Using Hierarchical Generative Adversarial Networks
Real-world designs usually consist of parts with hierarchical dependencies, i.e., the geometry of one component (a child shape) is dependent on another (a parent shape). We propose a method for synthesizing this type of design. It decomposes the problem of synthesizing the whole design into synthesizing each component separately but keeping the inter-component dependencies satisfied. This method constructs a two-level generative adversarial network to train two generative models for parent and child shapes, respectively. We then use the trained generative models to synthesize or explore parent and child shapes separately via a parent latent representation and infinite child latent representations, each conditioned on a parent shape. We evaluate and discuss the disentanglement and consistency of latent representations obtained by this method. We show that shapes change consistently along any direction in the latent space. This property is desirable for design exploration over the latent space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信