{"title":"磁场对核心坍缩超新星β过程的影响","authors":"A. Dobrynina, I. Ognev","doi":"10.22323/1.398.0048","DOIUrl":null,"url":null,"abstract":"Neutrinos play a significant and sometimes even dominant role in all phases of the supernova explosion. The most important neutrino processes in a core-collapse supernova are beta-processes, which are responsible for the energy exchange between neutrinos and the matter and change a chemical composition of a medium. We investigate an influence of a magnetic field on betaprocesses under conditions of a supernova matter. For any magnetic field strength discussed in applications to astrophysical objects we obtain simple analytical expressions for reaction rates of beta-processes. In our analysis we use results of one-dimensional simulations of a supernova explosion performed with the PROMETHEUS-VERTEX code. We found that, the magnetic field with the strength B ∼ 1015 G suppresses the neutron production on several percents in comparison with the unmagnetized case. The obtained analytical expressions can be also applied for postmerger accretion discs.","PeriodicalId":218352,"journal":{"name":"Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic-field influence on beta-processes in core-collapse supernova\",\"authors\":\"A. Dobrynina, I. Ognev\",\"doi\":\"10.22323/1.398.0048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neutrinos play a significant and sometimes even dominant role in all phases of the supernova explosion. The most important neutrino processes in a core-collapse supernova are beta-processes, which are responsible for the energy exchange between neutrinos and the matter and change a chemical composition of a medium. We investigate an influence of a magnetic field on betaprocesses under conditions of a supernova matter. For any magnetic field strength discussed in applications to astrophysical objects we obtain simple analytical expressions for reaction rates of beta-processes. In our analysis we use results of one-dimensional simulations of a supernova explosion performed with the PROMETHEUS-VERTEX code. We found that, the magnetic field with the strength B ∼ 1015 G suppresses the neutron production on several percents in comparison with the unmagnetized case. The obtained analytical expressions can be also applied for postmerger accretion discs.\",\"PeriodicalId\":218352,\"journal\":{\"name\":\"Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.398.0048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The European Physical Society Conference on High Energy Physics — PoS(EPS-HEP2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.398.0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetic-field influence on beta-processes in core-collapse supernova
Neutrinos play a significant and sometimes even dominant role in all phases of the supernova explosion. The most important neutrino processes in a core-collapse supernova are beta-processes, which are responsible for the energy exchange between neutrinos and the matter and change a chemical composition of a medium. We investigate an influence of a magnetic field on betaprocesses under conditions of a supernova matter. For any magnetic field strength discussed in applications to astrophysical objects we obtain simple analytical expressions for reaction rates of beta-processes. In our analysis we use results of one-dimensional simulations of a supernova explosion performed with the PROMETHEUS-VERTEX code. We found that, the magnetic field with the strength B ∼ 1015 G suppresses the neutron production on several percents in comparison with the unmagnetized case. The obtained analytical expressions can be also applied for postmerger accretion discs.