基于毫米波雷达和数据融合的多人跟踪和跌倒检测实时系统

Zichao Shen, J. Núñez-Yáñez, N. Dahnoun
{"title":"基于毫米波雷达和数据融合的多人跟踪和跌倒检测实时系统","authors":"Zichao Shen, J. Núñez-Yáñez, N. Dahnoun","doi":"10.1109/MECO58584.2023.10155097","DOIUrl":null,"url":null,"abstract":"This paper investigates an indoor multiple human tracking and fall detection system based on the usage of multiple Millimeter-Wave radars from Texas Instruments. We propose a real-time system framework to merge the signals received from radars and track the position and body status of human objects. In order to guarantee the overall accuracy of our system, we develop novel strategies such as dynamic DBSCAN clustering based on signal energy levels and a possibility matrix for multiple object tracking. Our prototype system, which employs three radars placed on x-y-z surfaces, demonstrates higher accuracy than the solution in [1] (90%), with 98.5% and 98.2% accuracy in multiple human tracking and fall detection respectively. The accuracy reaches 99.7% for single human tracking.","PeriodicalId":187825,"journal":{"name":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Human Tracking and Fall Detection Real-Time System Using Millimeter-Wave Radar and Data Fusion\",\"authors\":\"Zichao Shen, J. Núñez-Yáñez, N. Dahnoun\",\"doi\":\"10.1109/MECO58584.2023.10155097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates an indoor multiple human tracking and fall detection system based on the usage of multiple Millimeter-Wave radars from Texas Instruments. We propose a real-time system framework to merge the signals received from radars and track the position and body status of human objects. In order to guarantee the overall accuracy of our system, we develop novel strategies such as dynamic DBSCAN clustering based on signal energy levels and a possibility matrix for multiple object tracking. Our prototype system, which employs three radars placed on x-y-z surfaces, demonstrates higher accuracy than the solution in [1] (90%), with 98.5% and 98.2% accuracy in multiple human tracking and fall detection respectively. The accuracy reaches 99.7% for single human tracking.\",\"PeriodicalId\":187825,\"journal\":{\"name\":\"2023 12th Mediterranean Conference on Embedded Computing (MECO)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 12th Mediterranean Conference on Embedded Computing (MECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MECO58584.2023.10155097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 12th Mediterranean Conference on Embedded Computing (MECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECO58584.2023.10155097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于德州仪器公司多部毫米波雷达的室内多人跟踪与跌倒检测系统。我们提出了一个实时系统框架来合并从雷达接收的信号并跟踪人体物体的位置和身体状态。为了保证系统的整体精度,我们开发了基于信号能级的动态DBSCAN聚类和多目标跟踪的可能性矩阵等新策略。我们的原型系统采用了放置在x-y-z表面上的三个雷达,其精度比[1]中的解决方案(90%)更高,在多人跟踪和跌倒检测中分别达到98.5%和98.2%。单个人跟踪准确率达到99.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple Human Tracking and Fall Detection Real-Time System Using Millimeter-Wave Radar and Data Fusion
This paper investigates an indoor multiple human tracking and fall detection system based on the usage of multiple Millimeter-Wave radars from Texas Instruments. We propose a real-time system framework to merge the signals received from radars and track the position and body status of human objects. In order to guarantee the overall accuracy of our system, we develop novel strategies such as dynamic DBSCAN clustering based on signal energy levels and a possibility matrix for multiple object tracking. Our prototype system, which employs three radars placed on x-y-z surfaces, demonstrates higher accuracy than the solution in [1] (90%), with 98.5% and 98.2% accuracy in multiple human tracking and fall detection respectively. The accuracy reaches 99.7% for single human tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信