Pratheek Bagivalu Prasanna, A. Midha, Sushrut G. Bapat
{"title":"基于柔度数和拟刚体模型的柔度机构分类及自由度确定","authors":"Pratheek Bagivalu Prasanna, A. Midha, Sushrut G. Bapat","doi":"10.1115/detc2019-98522","DOIUrl":null,"url":null,"abstract":"\n Understanding the kinematic properties of a compliant mechanism has always proved to be a challenge. A concept of compliance number offered earlier emphasized the development of terminology that aided in its determination. A method to evaluate the elastic degrees of freedom associated with the flexible segments/links of a compliant mechanism using the pseudo-rigid-body model (PRBM) concept is provided. In this process, two distinct classes of compliant mechanisms are developed involving: (i) Active Compliance and (ii) Passive Compliance. Furthermore, these also aid in a better characterization of the kinematic behavior of a compliant mechanism. A more lucid interpretation of the significance of compliance number is provided. Applications of this method to both active and passive compliant mechanisms are exemplified. Finally, an experimental procedure that aids in visualizing the degrees of freedom as calculated is presented.","PeriodicalId":178253,"journal":{"name":"Volume 5A: 43rd Mechanisms and Robotics Conference","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Classification of Compliant Mechanisms and Determination of the Degrees of Freedom Using the Concepts of Compliance Number and Pseudo-Rigid-Body Model\",\"authors\":\"Pratheek Bagivalu Prasanna, A. Midha, Sushrut G. Bapat\",\"doi\":\"10.1115/detc2019-98522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Understanding the kinematic properties of a compliant mechanism has always proved to be a challenge. A concept of compliance number offered earlier emphasized the development of terminology that aided in its determination. A method to evaluate the elastic degrees of freedom associated with the flexible segments/links of a compliant mechanism using the pseudo-rigid-body model (PRBM) concept is provided. In this process, two distinct classes of compliant mechanisms are developed involving: (i) Active Compliance and (ii) Passive Compliance. Furthermore, these also aid in a better characterization of the kinematic behavior of a compliant mechanism. A more lucid interpretation of the significance of compliance number is provided. Applications of this method to both active and passive compliant mechanisms are exemplified. Finally, an experimental procedure that aids in visualizing the degrees of freedom as calculated is presented.\",\"PeriodicalId\":178253,\"journal\":{\"name\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-98522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of Compliant Mechanisms and Determination of the Degrees of Freedom Using the Concepts of Compliance Number and Pseudo-Rigid-Body Model
Understanding the kinematic properties of a compliant mechanism has always proved to be a challenge. A concept of compliance number offered earlier emphasized the development of terminology that aided in its determination. A method to evaluate the elastic degrees of freedom associated with the flexible segments/links of a compliant mechanism using the pseudo-rigid-body model (PRBM) concept is provided. In this process, two distinct classes of compliant mechanisms are developed involving: (i) Active Compliance and (ii) Passive Compliance. Furthermore, these also aid in a better characterization of the kinematic behavior of a compliant mechanism. A more lucid interpretation of the significance of compliance number is provided. Applications of this method to both active and passive compliant mechanisms are exemplified. Finally, an experimental procedure that aids in visualizing the degrees of freedom as calculated is presented.