动态面选择最大化分级相关性

Michael R. Glass, Md. Faisal Mahbub Chowdhury, Yu Deng, R. Mahindru, Nicolas R. Fauceglia, A. Gliozzo, Nandana Mihindukulasooriya
{"title":"动态面选择最大化分级相关性","authors":"Michael R. Glass, Md. Faisal Mahbub Chowdhury, Yu Deng, R. Mahindru, Nicolas R. Fauceglia, A. Gliozzo, Nandana Mihindukulasooriya","doi":"10.18653/v1/2021.internlp-1.5","DOIUrl":null,"url":null,"abstract":"Dynamic faceted search (DFS), an interactive query refinement technique, is a form of Human–computer information retrieval (HCIR) approach. It allows users to narrow down search results through facets, where the facets-documents mapping is determined at runtime based on the context of user query instead of pre-indexing the facets statically. In this paper, we propose a new unsupervised approach for dynamic facet generation, namely optimistic facets, which attempts to generate the best possible subset of facets, hence maximizing expected Discounted Cumulative Gain (DCG), a measure of ranking quality that uses a graded relevance scale. We also release code to generate a new evaluation dataset. Through empirical results on two datasets, we show that the proposed DFS approach considerably improves the document ranking in the search results.","PeriodicalId":262697,"journal":{"name":"Proceedings of the First Workshop on Interactive Learning for Natural Language Processing","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Facet Selection by Maximizing Graded Relevance\",\"authors\":\"Michael R. Glass, Md. Faisal Mahbub Chowdhury, Yu Deng, R. Mahindru, Nicolas R. Fauceglia, A. Gliozzo, Nandana Mihindukulasooriya\",\"doi\":\"10.18653/v1/2021.internlp-1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic faceted search (DFS), an interactive query refinement technique, is a form of Human–computer information retrieval (HCIR) approach. It allows users to narrow down search results through facets, where the facets-documents mapping is determined at runtime based on the context of user query instead of pre-indexing the facets statically. In this paper, we propose a new unsupervised approach for dynamic facet generation, namely optimistic facets, which attempts to generate the best possible subset of facets, hence maximizing expected Discounted Cumulative Gain (DCG), a measure of ranking quality that uses a graded relevance scale. We also release code to generate a new evaluation dataset. Through empirical results on two datasets, we show that the proposed DFS approach considerably improves the document ranking in the search results.\",\"PeriodicalId\":262697,\"journal\":{\"name\":\"Proceedings of the First Workshop on Interactive Learning for Natural Language Processing\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First Workshop on Interactive Learning for Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2021.internlp-1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Interactive Learning for Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.internlp-1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态面搜索(DFS)是一种交互式查询细化技术,是人机信息检索(HCIR)方法的一种形式。它允许用户通过方面缩小搜索结果,其中方面-文档映射是在运行时根据用户查询的上下文确定的,而不是静态地预先为方面建立索引。在本文中,我们提出了一种新的无监督的动态facet生成方法,即乐观facet,它试图生成facet的最佳子集,从而最大化预期贴现累积增益(DCG),这是一种使用分级相关尺度的排序质量度量。我们还发布了生成新的评估数据集的代码。通过在两个数据集上的实证结果,我们表明所提出的DFS方法显著提高了文档在搜索结果中的排名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic Facet Selection by Maximizing Graded Relevance
Dynamic faceted search (DFS), an interactive query refinement technique, is a form of Human–computer information retrieval (HCIR) approach. It allows users to narrow down search results through facets, where the facets-documents mapping is determined at runtime based on the context of user query instead of pre-indexing the facets statically. In this paper, we propose a new unsupervised approach for dynamic facet generation, namely optimistic facets, which attempts to generate the best possible subset of facets, hence maximizing expected Discounted Cumulative Gain (DCG), a measure of ranking quality that uses a graded relevance scale. We also release code to generate a new evaluation dataset. Through empirical results on two datasets, we show that the proposed DFS approach considerably improves the document ranking in the search results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信